m2nho commited on
Commit
ba6e8d9
·
verified ·
1 Parent(s): 3807877

End of training

Browse files
Files changed (1) hide show
  1. README.md +19 -19
README.md CHANGED
@@ -16,13 +16,13 @@ model-index:
16
  name: Automatic Speech Recognition
17
  type: automatic-speech-recognition
18
  dataset:
19
- name: 'This is a dataset constructed from two datasets: ATCO2-ASR and ATCOSIM.'
20
  type: Jzuluaga/atcosim_corpus
21
- args: 'config: en, split: test small split [3000]'
22
  metrics:
23
  - name: Wer
24
  type: wer
25
- value: 8.947972793922798
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -30,10 +30,10 @@ should probably proofread and complete it, then remove this comment. -->
30
 
31
  # Whisper small - Whisper with atcosim
32
 
33
- This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the This is a dataset constructed from two datasets: ATCO2-ASR and ATCOSIM. dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.2504
36
- - Wer: 8.9480
37
 
38
  ## Model description
39
 
@@ -64,23 +64,23 @@ The following hyperparameters were used during training:
64
 
65
  ### Training results
66
 
67
- | Training Loss | Epoch | Step | Validation Loss | Wer |
68
- |:-------------:|:------:|:----:|:---------------:|:-------:|
69
- | 0.0569 | 0.5319 | 100 | 0.3078 | 11.7922 |
70
- | 0.0307 | 1.0638 | 200 | 0.2728 | 10.8515 |
71
- | 0.0253 | 1.5957 | 300 | 0.2762 | 10.7190 |
72
- | 0.0066 | 2.1277 | 400 | 0.2551 | 9.0761 |
73
- | 0.0061 | 2.6596 | 500 | 0.2526 | 9.5795 |
74
- | 0.002 | 3.1915 | 600 | 0.2504 | 9.0010 |
75
- | 0.0019 | 3.7234 | 700 | 0.2561 | 9.2880 |
76
- | 0.0007 | 4.2553 | 800 | 0.2535 | 9.1026 |
77
- | 0.001 | 4.7872 | 900 | 0.2495 | 8.9259 |
78
- | 0.0003 | 5.3191 | 1000 | 0.2504 | 8.9480 |
79
 
80
 
81
  ### Framework versions
82
 
83
  - Transformers 4.41.2
84
  - Pytorch 2.3.0+cu121
85
- - Datasets 2.19.2
86
  - Tokenizers 0.19.1
 
16
  name: Automatic Speech Recognition
17
  type: automatic-speech-recognition
18
  dataset:
19
+ name: 'This is a dataset constructed from two datasets: ATCOSIM.'
20
  type: Jzuluaga/atcosim_corpus
21
+ args: 'config: en, split: test small split [full]'
22
  metrics:
23
  - name: Wer
24
  type: wer
25
+ value: 1.4177192827488738
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
30
 
31
  # Whisper small - Whisper with atcosim
32
 
33
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the This is a dataset constructed from two datasets: ATCOSIM. dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.0385
36
+ - Wer: 1.4177
37
 
38
  ## Model description
39
 
 
64
 
65
  ### Training results
66
 
67
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
68
+ |:-------------:|:------:|:----:|:---------------:|:------:|
69
+ | 0.0349 | 0.2092 | 100 | 0.0974 | 6.4040 |
70
+ | 0.0493 | 0.4184 | 200 | 0.0664 | 3.2329 |
71
+ | 0.0464 | 0.6276 | 300 | 0.0519 | 2.8708 |
72
+ | 0.0394 | 0.8368 | 400 | 0.0474 | 2.3055 |
73
+ | 0.0177 | 1.0460 | 500 | 0.0429 | 1.7004 |
74
+ | 0.0054 | 1.2552 | 600 | 0.0416 | 1.5458 |
75
+ | 0.0182 | 1.4644 | 700 | 0.0411 | 1.5193 |
76
+ | 0.008 | 1.6736 | 800 | 0.0400 | 1.4663 |
77
+ | 0.0055 | 1.8828 | 900 | 0.0387 | 1.4619 |
78
+ | 0.0053 | 2.0921 | 1000 | 0.0385 | 1.4177 |
79
 
80
 
81
  ### Framework versions
82
 
83
  - Transformers 4.41.2
84
  - Pytorch 2.3.0+cu121
85
+ - Datasets 2.20.0
86
  - Tokenizers 0.19.1