--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - Jzuluaga/atcosim_corpus metrics: - wer model-index: - name: Whisper small - Whisper with atcosim results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: 'This is a dataset constructed from two datasets: ATCOSIM.' type: Jzuluaga/atcosim_corpus args: 'config: en, split: test small split [full]' metrics: - name: Wer type: wer value: 1.4177192827488738 --- # Whisper small - Whisper with atcosim This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the This is a dataset constructed from two datasets: ATCOSIM. dataset. It achieves the following results on the evaluation set: - Loss: 0.0385 - Wer: 1.4177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.0349 | 0.2092 | 100 | 0.0974 | 6.4040 | | 0.0493 | 0.4184 | 200 | 0.0664 | 3.2329 | | 0.0464 | 0.6276 | 300 | 0.0519 | 2.8708 | | 0.0394 | 0.8368 | 400 | 0.0474 | 2.3055 | | 0.0177 | 1.0460 | 500 | 0.0429 | 1.7004 | | 0.0054 | 1.2552 | 600 | 0.0416 | 1.5458 | | 0.0182 | 1.4644 | 700 | 0.0411 | 1.5193 | | 0.008 | 1.6736 | 800 | 0.0400 | 1.4663 | | 0.0055 | 1.8828 | 900 | 0.0387 | 1.4619 | | 0.0053 | 2.0921 | 1000 | 0.0385 | 1.4177 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1