File size: 2,188 Bytes
336283a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2b467c
336283a
bc2a8c0
c2b467c
 
 
 
 
 
 
 
 
 
 
 
336283a
 
 
c2b467c
 
 
 
336283a
c2b467c
7b894c1
c2b467c
 
 
336283a
c2b467c
336283a
c2b467c
336283a
c2b467c
 
 
 
336283a
c2b467c
 
336283a
c2b467c
336283a
c2b467c
 
afdace4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
license: llama3
language:
- en
base_model:
- m3rg-iitd/llamat-3
tags:
- material science
- large language model
- domain adaptation
- scientific domain adaptation
- materials copilot
- information extraction
- table understanding
- table data parsing
---
# Model Card for LLaMat-3-Chat

**LLaMat-3-Chat** is a specialized large language model designed to serve as a copilot for materials research. Finetuned from **LLaMat-3**, this model is adapted for tasks such as information extraction from material science text and tabular data.

---

## Overview

- **Model Type:** Large Language Model (LLM)  
- **Base Model:** LLaMat-3 (continued pretraining of LLaMA-3 on material science data)  
- **Language:** English  
- **License:** LLaMA-3 License  
- **Tags:** Material Science, Domain Adaptation, Table Understanding, Scientific Data Parsing, Materials Copilot  

---

## Model Details

### Key Features
- **Instruction Following Abilities:** Optimized for understanding and processing instructions in the material science domain.  
- **Domain-Specific Expertise:** Pretrained on material science tokens, enabling high performance in scientific applications.  
- **Applications:** information extraction, table understanding, and parsing data for research tasks.  

### Development and Support
- **Developed by:** [M3RG, IIT Delhi](https://github.com/M3RG-IITD/) & [DAIR, IIT Delhi](https://github.com/dair-iitd)
- **Compute Support:**  
  - **Edinburgh International Data Facility (EIDF):** Provided access to Cerebras CS2 clusters for pretraining.  
  - **IIT Delhi High-Performance Computing Cluster:** Supported fine-tuning and inference stages.  

---

## Technical Specifications

### Hardware Infrastructure
- **Pretraining:** 2 Cerebras CS-2 Wafer-Scale Engines (WSE-2)  
- **Finetuning:** 8 NVIDIA A100 80GB GPUs  
- **Inferencing:** 1 NVIDIA A100 80GB GPU  

### Software Stack
- **Frameworks:** PyTorch, Hugging Face Transformers  

---

## Model Sources
- **Repository:** [LLaMat-3 on GitHub](https://github.com/M3RG-IITD/llamat)  
- **Compute Resources:** [EIDF Cerebras CS Clusters](https://edinburgh-international-data-facility.ed.ac.uk/services/computing/cerebras-cs)