File size: 2,188 Bytes
336283a c2b467c 336283a bc2a8c0 c2b467c 336283a c2b467c 336283a c2b467c 7b894c1 c2b467c 336283a c2b467c 336283a c2b467c 336283a c2b467c 336283a c2b467c 336283a c2b467c 336283a c2b467c afdace4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
license: llama3
language:
- en
base_model:
- m3rg-iitd/llamat-3
tags:
- material science
- large language model
- domain adaptation
- scientific domain adaptation
- materials copilot
- information extraction
- table understanding
- table data parsing
---
# Model Card for LLaMat-3-Chat
**LLaMat-3-Chat** is a specialized large language model designed to serve as a copilot for materials research. Finetuned from **LLaMat-3**, this model is adapted for tasks such as information extraction from material science text and tabular data.
---
## Overview
- **Model Type:** Large Language Model (LLM)
- **Base Model:** LLaMat-3 (continued pretraining of LLaMA-3 on material science data)
- **Language:** English
- **License:** LLaMA-3 License
- **Tags:** Material Science, Domain Adaptation, Table Understanding, Scientific Data Parsing, Materials Copilot
---
## Model Details
### Key Features
- **Instruction Following Abilities:** Optimized for understanding and processing instructions in the material science domain.
- **Domain-Specific Expertise:** Pretrained on material science tokens, enabling high performance in scientific applications.
- **Applications:** information extraction, table understanding, and parsing data for research tasks.
### Development and Support
- **Developed by:** [M3RG, IIT Delhi](https://github.com/M3RG-IITD/) & [DAIR, IIT Delhi](https://github.com/dair-iitd)
- **Compute Support:**
- **Edinburgh International Data Facility (EIDF):** Provided access to Cerebras CS2 clusters for pretraining.
- **IIT Delhi High-Performance Computing Cluster:** Supported fine-tuning and inference stages.
---
## Technical Specifications
### Hardware Infrastructure
- **Pretraining:** 2 Cerebras CS-2 Wafer-Scale Engines (WSE-2)
- **Finetuning:** 8 NVIDIA A100 80GB GPUs
- **Inferencing:** 1 NVIDIA A100 80GB GPU
### Software Stack
- **Frameworks:** PyTorch, Hugging Face Transformers
---
## Model Sources
- **Repository:** [LLaMat-3 on GitHub](https://github.com/M3RG-IITD/llamat)
- **Compute Resources:** [EIDF Cerebras CS Clusters](https://edinburgh-international-data-facility.ed.ac.uk/services/computing/cerebras-cs) |