Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,135 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: Qwen/Qwen2.5-3B-Instruct
|
4 |
+
library_name: peft
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
tags:
|
7 |
+
- lora
|
8 |
+
- transformers
|
9 |
+
- korean
|
10 |
+
- npc
|
11 |
+
- game-ai
|
12 |
+
---
|
13 |
+
|
14 |
+
# npc_LoRA
|
15 |
+
|
16 |
+
**npc_LoRA** is a LoRA adapter built on top of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct), designed to generate emotionally rich, context-aware dialogue for non-player characters (NPCs) in Korean-language game environments.
|
17 |
+
|
18 |
+
This project is part of a portfolio for industrial service roles in AI and game development, showcasing practical model design, multi-head training, and real-world integration strategies.
|
19 |
+
|
20 |
+
## π§ Model Architecture
|
21 |
+
|
22 |
+
- **Base model**: Qwen2.5-3B-Instruct
|
23 |
+
- **Adapter type**: LoRA (via PEFT)
|
24 |
+
- **Language**: Korean
|
25 |
+
- **Task**: Text generation with auxiliary heads
|
26 |
+
- **Heads added**:
|
27 |
+
- `delta_head`: Predicts 2D continuous values for narrative state change
|
28 |
+
- `flag_head`: Predicts 3 or more binary flags for game logic triggers
|
29 |
+
|
30 |
+
## ποΈ Training Setup
|
31 |
+
|
32 |
+
- **Environment**: Google Colab with A100 GPU
|
33 |
+
- **Quantization**: 4-bit (nf4) via BitsAndBytes
|
34 |
+
- **Batch size**: 2 (gradient accumulation: 8)
|
35 |
+
- **Epochs**: 6
|
36 |
+
- **Losses**:
|
37 |
+
- Language modeling (CrossEntropy)
|
38 |
+
- Delta prediction (MSE)
|
39 |
+
- Flag prediction (BCE)
|
40 |
+
|
41 |
+
## π Prompt Format
|
42 |
+
|
43 |
+
```text
|
44 |
+
<SYS>
|
45 |
+
NPC_ID=...
|
46 |
+
TAGS:
|
47 |
+
location=...
|
48 |
+
quest_stage=...
|
49 |
+
relationship=...
|
50 |
+
trust=...
|
51 |
+
npc_mood=...
|
52 |
+
player_reputation=...
|
53 |
+
style=...
|
54 |
+
REQUIRE:
|
55 |
+
...
|
56 |
+
FORMAT:
|
57 |
+
<RESPONSE>...</RESPONSE>
|
58 |
+
<DELTA ...>
|
59 |
+
<FLAG ...>
|
60 |
+
</SYS>
|
61 |
+
<CTX>
|
62 |
+
player: ...
|
63 |
+
npc: ...
|
64 |
+
</CTX>
|
65 |
+
<PLAYER>...
|
66 |
+
<NPC>
|
67 |
+
```
|
68 |
+
|
69 |
+
## π Inference Example
|
70 |
+
|
71 |
+
```python
|
72 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
73 |
+
from peft import PeftModel
|
74 |
+
import torch.nn as nn
|
75 |
+
|
76 |
+
BASE_MODEL = "Qwen/Qwen2.5-3B-Instruct"
|
77 |
+
ADAPTER_PATH = "minjae/npc_LoRA"
|
78 |
+
|
79 |
+
tokenizer = AutoTokenizer.from_pretrained(ADAPTER_PATH, use_fast=True)
|
80 |
+
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL, device_map="auto", trust_remote_code=True)
|
81 |
+
model = PeftModel.from_pretrained(model, ADAPTER_PATH)
|
82 |
+
|
83 |
+
# Add heads
|
84 |
+
hidden_size = model.config.hidden_size
|
85 |
+
model.delta_head = nn.Linear(hidden_size, 2).to(model.device)
|
86 |
+
model.flag_head = nn.Linear(hidden_size, 3).to(model.device)
|
87 |
+
|
88 |
+
prompt = "<SYS>...<CTX>...<PLAYER>...<NPC>"
|
89 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
90 |
+
|
91 |
+
with torch.no_grad():
|
92 |
+
outputs = model(**inputs, output_hidden_states=True)
|
93 |
+
gen_ids = model.generate(**inputs, max_new_tokens=100)
|
94 |
+
generated_text = tokenizer.decode(gen_ids[0], skip_special_tokens=True)
|
95 |
+
|
96 |
+
last_hidden = outputs.hidden_states[-1][:, -1, :]
|
97 |
+
delta = model.delta_head(last_hidden)
|
98 |
+
flag = model.flag_head(last_hidden)
|
99 |
+
|
100 |
+
print("Response:", generated_text)
|
101 |
+
print("Delta:", delta)
|
102 |
+
print("Flags:", torch.sigmoid(flag))
|
103 |
+
```
|
104 |
+
|
105 |
+
## π§© Use Cases
|
106 |
+
|
107 |
+
- NPC dialogue generation in Korean RPGs
|
108 |
+
- Emotionally adaptive storytelling
|
109 |
+
- Game logic trigger prediction (e.g., quest progression, item handoff)
|
110 |
+
|
111 |
+
## π Repository Structure
|
112 |
+
|
113 |
+
```
|
114 |
+
npc_LoRA/
|
115 |
+
βββ lora-output-jason-mom-head/ # LoRA adapter files
|
116 |
+
βββ README.md
|
117 |
+
```
|
118 |
+
|
119 |
+
## π Notes
|
120 |
+
|
121 |
+
- Adapter is optimized for Korean-language prompts and multi-turn dialogue.
|
122 |
+
- Designed to integrate with game engines or AI-driven simulation platforms.
|
123 |
+
- Compatible with Hugging Face Spaces (CPU/GPU) and local inference.
|
124 |
+
|
125 |
+
## π License
|
126 |
+
|
127 |
+
MIT
|
128 |
+
|
129 |
+
## π€ Author
|
130 |
+
|
131 |
+
Created by **Minjae**
|
132 |
+
Portfolio: [GitHub Profile](https://github.com/m97j)
|
133 |
+
Contact: [[email protected]]
|
134 |
+
|
135 |
+
|