File size: 1,310 Bytes
5cd1a45 c93382a e75eaf7 c93382a e75eaf7 b7cd939 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
license: mit
---
# Piccolo-math-2x7b
**In loving memory of my dog Klaus (Piccolo)**
_~ Piccolo (Italian): the little one ~_

# Code Example
Inference and Evaluation colab available [here](https://colab.research.google.com/drive/1ZqLNvVvtFHC_4v2CgcMVh7pP9Fvx0SbI?usp=sharing)
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
def generate_response(prompt):
"""
Generate a response from the model based on the input prompt.
Args:
prompt (str): Prompt for the model.
Returns:
str: The generated response from the model.
"""
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
model_id = "macadeliccc/piccolo-math-2x7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,load_in_4bit=True)
prompt = "What is the best way to train Cane Corsos?"
print("Response:")
print(generate_response(prompt), "\n")
```
The model is capable of quality code, math, and logical reasoning. Try whatever questions you think of.
# Evaluations
TODO
|