Adding modes, graphs and metadata.
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +92 -0
- model_card/layer_images/layer_0_attention_output_dense.png +0 -0
- model_card/layer_images/layer_0_attention_self_key.png +0 -0
- model_card/layer_images/layer_0_attention_self_query.png +0 -0
- model_card/layer_images/layer_0_attention_self_value.png +0 -0
- model_card/layer_images/layer_0_intermediate_dense.png +0 -0
- model_card/layer_images/layer_0_output_dense.png +0 -0
- model_card/layer_images/layer_10_attention_output_dense.png +0 -0
- model_card/layer_images/layer_10_attention_self_key.png +0 -0
- model_card/layer_images/layer_10_attention_self_query.png +0 -0
- model_card/layer_images/layer_10_attention_self_value.png +0 -0
- model_card/layer_images/layer_10_intermediate_dense.png +0 -0
- model_card/layer_images/layer_10_output_dense.png +0 -0
- model_card/layer_images/layer_11_attention_output_dense.png +0 -0
- model_card/layer_images/layer_11_attention_self_key.png +0 -0
- model_card/layer_images/layer_11_attention_self_query.png +0 -0
- model_card/layer_images/layer_11_attention_self_value.png +0 -0
- model_card/layer_images/layer_11_intermediate_dense.png +0 -0
- model_card/layer_images/layer_11_output_dense.png +0 -0
- model_card/layer_images/layer_1_attention_output_dense.png +0 -0
- model_card/layer_images/layer_1_attention_self_key.png +0 -0
- model_card/layer_images/layer_1_attention_self_query.png +0 -0
- model_card/layer_images/layer_1_attention_self_value.png +0 -0
- model_card/layer_images/layer_1_intermediate_dense.png +0 -0
- model_card/layer_images/layer_1_output_dense.png +0 -0
- model_card/layer_images/layer_2_attention_output_dense.png +0 -0
- model_card/layer_images/layer_2_attention_self_key.png +0 -0
- model_card/layer_images/layer_2_attention_self_query.png +0 -0
- model_card/layer_images/layer_2_attention_self_value.png +0 -0
- model_card/layer_images/layer_2_intermediate_dense.png +0 -0
- model_card/layer_images/layer_2_output_dense.png +0 -0
- model_card/layer_images/layer_3_attention_output_dense.png +0 -0
- model_card/layer_images/layer_3_attention_self_key.png +0 -0
- model_card/layer_images/layer_3_attention_self_query.png +0 -0
- model_card/layer_images/layer_3_attention_self_value.png +0 -0
- model_card/layer_images/layer_3_intermediate_dense.png +0 -0
- model_card/layer_images/layer_3_output_dense.png +0 -0
- model_card/layer_images/layer_4_attention_output_dense.png +0 -0
- model_card/layer_images/layer_4_attention_self_key.png +0 -0
- model_card/layer_images/layer_4_attention_self_query.png +0 -0
- model_card/layer_images/layer_4_attention_self_value.png +0 -0
- model_card/layer_images/layer_4_intermediate_dense.png +0 -0
- model_card/layer_images/layer_4_output_dense.png +0 -0
- model_card/layer_images/layer_5_attention_output_dense.png +0 -0
- model_card/layer_images/layer_5_attention_self_key.png +0 -0
- model_card/layer_images/layer_5_attention_self_query.png +0 -0
- model_card/layer_images/layer_5_attention_self_value.png +0 -0
- model_card/layer_images/layer_5_intermediate_dense.png +0 -0
- model_card/layer_images/layer_5_output_dense.png +0 -0
- model_card/layer_images/layer_6_attention_output_dense.png +0 -0
README.md
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
thumbnail:
|
| 4 |
+
license: mit
|
| 5 |
+
tags:
|
| 6 |
+
- question-answering
|
| 7 |
+
- bert
|
| 8 |
+
- bert-base
|
| 9 |
+
datasets:
|
| 10 |
+
- squad
|
| 11 |
+
metrics:
|
| 12 |
+
- squad
|
| 13 |
+
widget:
|
| 14 |
+
- text: "Where is the Eiffel Tower located?"
|
| 15 |
+
context: "The Eiffel Tower is a wrought-iron lattice tower on the Champ de Mars in Paris, France. It is named after the engineer Gustave Eiffel, whose company designed and built the tower."
|
| 16 |
+
- text: "Who is Frederic Chopin?"
|
| 17 |
+
context: "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano."
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
## BERT-base uncased model fine-tuned on SQuAD v1
|
| 21 |
+
|
| 22 |
+
This model is block sparse: the **linear** layers contains **31.7%** of the original weights.
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
The model contains **47.0%** of the original weights **overall**.
|
| 26 |
+
|
| 27 |
+
The training use a modified version of Victor Sanh [Movement Pruning](https://arxiv.org/abs/2005.07683) method.
|
| 28 |
+
|
| 29 |
+
That means that with the [block-sparse](https://github.com/huggingface/pytorch_block_sparse) runtime it ran **1.12x** faster than an dense networks on the evaluation, at the price of some impact on the accuracy (see below).
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
This model was fine-tuned from the HuggingFace [BERT](https://www.aclweb.org/anthology/N19-1423/) base uncased checkpoint on [SQuAD1.1](https://rajpurkar.github.io/SQuAD-explorer), and distilled from the equivalent model [csarron/bert-base-uncased-squad-v1](https://huggingface.co/csarron/bert-base-uncased-squad-v1).
|
| 34 |
+
This model is case-insensitive: it does not make a difference between english and English.
|
| 35 |
+
|
| 36 |
+
## Pruning details
|
| 37 |
+
A side-effect of the block pruning is that some of the attention heads are completely removed: 80 heads were removed on a total of 144 (55.6%).
|
| 38 |
+
|
| 39 |
+
Here is a detailed view on how the remaining heads are distributed in the network after pruning.
|
| 40 |
+
|
| 41 |
+

|
| 42 |
+
|
| 43 |
+
## Density plot
|
| 44 |
+
|
| 45 |
+
<script src="/madlag/bert-base-uncased-squad1.1-block-sparse-0.32-v1/raw/main/model_card/density.js" id="99e8f49a-58f0-4dba-be69-37da14a1cd97"></script>
|
| 46 |
+
|
| 47 |
+
## Details
|
| 48 |
+
|
| 49 |
+
| Dataset | Split | # samples |
|
| 50 |
+
| -------- | ----- | --------- |
|
| 51 |
+
| SQuAD1.1 | train | 90.6K |
|
| 52 |
+
| SQuAD1.1 | eval | 11.1k |
|
| 53 |
+
|
| 54 |
+
### Fine-tuning
|
| 55 |
+
- Python: `3.8.5`
|
| 56 |
+
|
| 57 |
+
- Machine specs:
|
| 58 |
+
|
| 59 |
+
```CPU: Intel(R) Core(TM) i7-6700K CPU
|
| 60 |
+
Memory: 64 GiB
|
| 61 |
+
GPUs: 1 GeForce GTX 3090, with 24GiB memory
|
| 62 |
+
GPU driver: 455.23.05, CUDA: 11.1
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
### Results
|
| 67 |
+
|
| 68 |
+
**Pytorch model file size**: `355M` (original BERT: `438M`)
|
| 69 |
+
|
| 70 |
+
| Metric | # Value | # Original ([Table 2](https://www.aclweb.org/anthology/N19-1423.pdf))|
|
| 71 |
+
| ------ | --------- | --------- |
|
| 72 |
+
| **EM** | **79.04** | **80.8** |
|
| 73 |
+
| **F1** | **86.70** | **88.5** |
|
| 74 |
+
|
| 75 |
+
## Example Usage
|
| 76 |
+
|
| 77 |
+
```python
|
| 78 |
+
from transformers import pipeline
|
| 79 |
+
|
| 80 |
+
qa_pipeline = pipeline(
|
| 81 |
+
"question-answering",
|
| 82 |
+
model="madlag/bert-base-uncased-squad1.1-block-sparse-0.32-v1",
|
| 83 |
+
tokenizer="madlag/bert-base-uncased-squad1.1-block-sparse-0.32-v1"
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
predictions = qa_pipeline({
|
| 87 |
+
'context': "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano.",
|
| 88 |
+
'question': "Who is Frederic Chopin?",
|
| 89 |
+
})
|
| 90 |
+
|
| 91 |
+
print(predictions)
|
| 92 |
+
```
|
model_card/layer_images/layer_0_attention_output_dense.png
ADDED
|
model_card/layer_images/layer_0_attention_self_key.png
ADDED
|
model_card/layer_images/layer_0_attention_self_query.png
ADDED
|
model_card/layer_images/layer_0_attention_self_value.png
ADDED
|
model_card/layer_images/layer_0_intermediate_dense.png
ADDED
|
model_card/layer_images/layer_0_output_dense.png
ADDED
|
model_card/layer_images/layer_10_attention_output_dense.png
ADDED
|
model_card/layer_images/layer_10_attention_self_key.png
ADDED
|
model_card/layer_images/layer_10_attention_self_query.png
ADDED
|
model_card/layer_images/layer_10_attention_self_value.png
ADDED
|
model_card/layer_images/layer_10_intermediate_dense.png
ADDED
|
model_card/layer_images/layer_10_output_dense.png
ADDED
|
model_card/layer_images/layer_11_attention_output_dense.png
ADDED
|
model_card/layer_images/layer_11_attention_self_key.png
ADDED
|
model_card/layer_images/layer_11_attention_self_query.png
ADDED
|
model_card/layer_images/layer_11_attention_self_value.png
ADDED
|
model_card/layer_images/layer_11_intermediate_dense.png
ADDED
|
model_card/layer_images/layer_11_output_dense.png
ADDED
|
model_card/layer_images/layer_1_attention_output_dense.png
ADDED
|
model_card/layer_images/layer_1_attention_self_key.png
ADDED
|
model_card/layer_images/layer_1_attention_self_query.png
ADDED
|
model_card/layer_images/layer_1_attention_self_value.png
ADDED
|
model_card/layer_images/layer_1_intermediate_dense.png
ADDED
|
model_card/layer_images/layer_1_output_dense.png
ADDED
|
model_card/layer_images/layer_2_attention_output_dense.png
ADDED
|
model_card/layer_images/layer_2_attention_self_key.png
ADDED
|
model_card/layer_images/layer_2_attention_self_query.png
ADDED
|
model_card/layer_images/layer_2_attention_self_value.png
ADDED
|
model_card/layer_images/layer_2_intermediate_dense.png
ADDED
|
model_card/layer_images/layer_2_output_dense.png
ADDED
|
model_card/layer_images/layer_3_attention_output_dense.png
ADDED
|
model_card/layer_images/layer_3_attention_self_key.png
ADDED
|
model_card/layer_images/layer_3_attention_self_query.png
ADDED
|
model_card/layer_images/layer_3_attention_self_value.png
ADDED
|
model_card/layer_images/layer_3_intermediate_dense.png
ADDED
|
model_card/layer_images/layer_3_output_dense.png
ADDED
|
model_card/layer_images/layer_4_attention_output_dense.png
ADDED
|
model_card/layer_images/layer_4_attention_self_key.png
ADDED
|
model_card/layer_images/layer_4_attention_self_query.png
ADDED
|
model_card/layer_images/layer_4_attention_self_value.png
ADDED
|
model_card/layer_images/layer_4_intermediate_dense.png
ADDED
|
model_card/layer_images/layer_4_output_dense.png
ADDED
|
model_card/layer_images/layer_5_attention_output_dense.png
ADDED
|
model_card/layer_images/layer_5_attention_self_key.png
ADDED
|
model_card/layer_images/layer_5_attention_self_query.png
ADDED
|
model_card/layer_images/layer_5_attention_self_value.png
ADDED
|
model_card/layer_images/layer_5_intermediate_dense.png
ADDED
|
model_card/layer_images/layer_5_output_dense.png
ADDED
|
model_card/layer_images/layer_6_attention_output_dense.png
ADDED
|