mafzaal commited on
Commit
03847d2
·
verified ·
1 Parent(s): ac8374d

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:324
8
+ - loss:MatryoshkaLoss
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: Snowflake/snowflake-arctic-embed-l
11
+ widget:
12
+ - source_sentence: question
13
+ sentences:
14
+ - context
15
+ - context
16
+ - context
17
+ - source_sentence: question
18
+ sentences:
19
+ - context
20
+ - context
21
+ - context
22
+ - source_sentence: question
23
+ sentences:
24
+ - context
25
+ - context
26
+ - context
27
+ - source_sentence: question
28
+ sentences:
29
+ - context
30
+ - context
31
+ - context
32
+ - source_sentence: question
33
+ sentences:
34
+ - context
35
+ - context
36
+ - context
37
+ pipeline_tag: sentence-similarity
38
+ library_name: sentence-transformers
39
+ ---
40
+
41
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
42
+
43
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** Sentence Transformer
49
+ - **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Output Dimensionality:** 1024 dimensions
52
+ - **Similarity Function:** Cosine Similarity
53
+ <!-- - **Training Dataset:** Unknown -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
60
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
61
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
62
+
63
+ ### Full Model Architecture
64
+
65
+ ```
66
+ SentenceTransformer(
67
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
68
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
69
+ (2): Normalize()
70
+ )
71
+ ```
72
+
73
+ ## Usage
74
+
75
+ ### Direct Usage (Sentence Transformers)
76
+
77
+ First install the Sentence Transformers library:
78
+
79
+ ```bash
80
+ pip install -U sentence-transformers
81
+ ```
82
+
83
+ Then you can load this model and run inference.
84
+ ```python
85
+ from sentence_transformers import SentenceTransformer
86
+
87
+ # Download from the 🤗 Hub
88
+ model = SentenceTransformer("mafzaal/thedataguy_arctic_ft")
89
+ # Run inference
90
+ sentences = [
91
+ 'question',
92
+ 'context',
93
+ 'context',
94
+ ]
95
+ embeddings = model.encode(sentences)
96
+ print(embeddings.shape)
97
+ # [3, 1024]
98
+
99
+ # Get the similarity scores for the embeddings
100
+ similarities = model.similarity(embeddings, embeddings)
101
+ print(similarities.shape)
102
+ # [3, 3]
103
+ ```
104
+
105
+ <!--
106
+ ### Direct Usage (Transformers)
107
+
108
+ <details><summary>Click to see the direct usage in Transformers</summary>
109
+
110
+ </details>
111
+ -->
112
+
113
+ <!--
114
+ ### Downstream Usage (Sentence Transformers)
115
+
116
+ You can finetune this model on your own dataset.
117
+
118
+ <details><summary>Click to expand</summary>
119
+
120
+ </details>
121
+ -->
122
+
123
+ <!--
124
+ ### Out-of-Scope Use
125
+
126
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
127
+ -->
128
+
129
+ <!--
130
+ ## Bias, Risks and Limitations
131
+
132
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
133
+ -->
134
+
135
+ <!--
136
+ ### Recommendations
137
+
138
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
139
+ -->
140
+
141
+ ## Training Details
142
+
143
+ ### Training Dataset
144
+
145
+ #### Unnamed Dataset
146
+
147
+ * Size: 324 training samples
148
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
149
+ * Approximate statistics based on the first 324 samples:
150
+ | | sentence_0 | sentence_1 |
151
+ |:--------|:-------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|
152
+ | type | string | string |
153
+ | details | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> |
154
+ * Samples:
155
+ | sentence_0 | sentence_1 |
156
+ |:----------------------|:---------------------|
157
+ | <code>question</code> | <code>context</code> |
158
+ | <code>question</code> | <code>context</code> |
159
+ | <code>question</code> | <code>context</code> |
160
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
161
+ ```json
162
+ {
163
+ "loss": "MultipleNegativesRankingLoss",
164
+ "matryoshka_dims": [
165
+ 768,
166
+ 512,
167
+ 256,
168
+ 128,
169
+ 64
170
+ ],
171
+ "matryoshka_weights": [
172
+ 1,
173
+ 1,
174
+ 1,
175
+ 1,
176
+ 1
177
+ ],
178
+ "n_dims_per_step": -1
179
+ }
180
+ ```
181
+
182
+ ### Training Hyperparameters
183
+ #### Non-Default Hyperparameters
184
+
185
+ - `per_device_train_batch_size`: 10
186
+ - `per_device_eval_batch_size`: 10
187
+ - `num_train_epochs`: 100
188
+ - `multi_dataset_batch_sampler`: round_robin
189
+
190
+ #### All Hyperparameters
191
+ <details><summary>Click to expand</summary>
192
+
193
+ - `overwrite_output_dir`: False
194
+ - `do_predict`: False
195
+ - `eval_strategy`: no
196
+ - `prediction_loss_only`: True
197
+ - `per_device_train_batch_size`: 10
198
+ - `per_device_eval_batch_size`: 10
199
+ - `per_gpu_train_batch_size`: None
200
+ - `per_gpu_eval_batch_size`: None
201
+ - `gradient_accumulation_steps`: 1
202
+ - `eval_accumulation_steps`: None
203
+ - `torch_empty_cache_steps`: None
204
+ - `learning_rate`: 5e-05
205
+ - `weight_decay`: 0.0
206
+ - `adam_beta1`: 0.9
207
+ - `adam_beta2`: 0.999
208
+ - `adam_epsilon`: 1e-08
209
+ - `max_grad_norm`: 1
210
+ - `num_train_epochs`: 100
211
+ - `max_steps`: -1
212
+ - `lr_scheduler_type`: linear
213
+ - `lr_scheduler_kwargs`: {}
214
+ - `warmup_ratio`: 0.0
215
+ - `warmup_steps`: 0
216
+ - `log_level`: passive
217
+ - `log_level_replica`: warning
218
+ - `log_on_each_node`: True
219
+ - `logging_nan_inf_filter`: True
220
+ - `save_safetensors`: True
221
+ - `save_on_each_node`: False
222
+ - `save_only_model`: False
223
+ - `restore_callback_states_from_checkpoint`: False
224
+ - `no_cuda`: False
225
+ - `use_cpu`: False
226
+ - `use_mps_device`: False
227
+ - `seed`: 42
228
+ - `data_seed`: None
229
+ - `jit_mode_eval`: False
230
+ - `use_ipex`: False
231
+ - `bf16`: False
232
+ - `fp16`: False
233
+ - `fp16_opt_level`: O1
234
+ - `half_precision_backend`: auto
235
+ - `bf16_full_eval`: False
236
+ - `fp16_full_eval`: False
237
+ - `tf32`: None
238
+ - `local_rank`: 0
239
+ - `ddp_backend`: None
240
+ - `tpu_num_cores`: None
241
+ - `tpu_metrics_debug`: False
242
+ - `debug`: []
243
+ - `dataloader_drop_last`: False
244
+ - `dataloader_num_workers`: 0
245
+ - `dataloader_prefetch_factor`: None
246
+ - `past_index`: -1
247
+ - `disable_tqdm`: False
248
+ - `remove_unused_columns`: True
249
+ - `label_names`: None
250
+ - `load_best_model_at_end`: False
251
+ - `ignore_data_skip`: False
252
+ - `fsdp`: []
253
+ - `fsdp_min_num_params`: 0
254
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
255
+ - `tp_size`: 0
256
+ - `fsdp_transformer_layer_cls_to_wrap`: None
257
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
258
+ - `deepspeed`: None
259
+ - `label_smoothing_factor`: 0.0
260
+ - `optim`: adamw_torch
261
+ - `optim_args`: None
262
+ - `adafactor`: False
263
+ - `group_by_length`: False
264
+ - `length_column_name`: length
265
+ - `ddp_find_unused_parameters`: None
266
+ - `ddp_bucket_cap_mb`: None
267
+ - `ddp_broadcast_buffers`: False
268
+ - `dataloader_pin_memory`: True
269
+ - `dataloader_persistent_workers`: False
270
+ - `skip_memory_metrics`: True
271
+ - `use_legacy_prediction_loop`: False
272
+ - `push_to_hub`: False
273
+ - `resume_from_checkpoint`: None
274
+ - `hub_model_id`: None
275
+ - `hub_strategy`: every_save
276
+ - `hub_private_repo`: None
277
+ - `hub_always_push`: False
278
+ - `gradient_checkpointing`: False
279
+ - `gradient_checkpointing_kwargs`: None
280
+ - `include_inputs_for_metrics`: False
281
+ - `include_for_metrics`: []
282
+ - `eval_do_concat_batches`: True
283
+ - `fp16_backend`: auto
284
+ - `push_to_hub_model_id`: None
285
+ - `push_to_hub_organization`: None
286
+ - `mp_parameters`:
287
+ - `auto_find_batch_size`: False
288
+ - `full_determinism`: False
289
+ - `torchdynamo`: None
290
+ - `ray_scope`: last
291
+ - `ddp_timeout`: 1800
292
+ - `torch_compile`: False
293
+ - `torch_compile_backend`: None
294
+ - `torch_compile_mode`: None
295
+ - `include_tokens_per_second`: False
296
+ - `include_num_input_tokens_seen`: False
297
+ - `neftune_noise_alpha`: None
298
+ - `optim_target_modules`: None
299
+ - `batch_eval_metrics`: False
300
+ - `eval_on_start`: False
301
+ - `use_liger_kernel`: False
302
+ - `eval_use_gather_object`: False
303
+ - `average_tokens_across_devices`: False
304
+ - `prompts`: None
305
+ - `batch_sampler`: batch_sampler
306
+ - `multi_dataset_batch_sampler`: round_robin
307
+
308
+ </details>
309
+
310
+ ### Training Logs
311
+ | Epoch | Step | Training Loss |
312
+ |:-------:|:----:|:-------------:|
313
+ | 15.1515 | 500 | 11.4433 |
314
+ | 30.3030 | 1000 | 11.4088 |
315
+ | 45.4545 | 1500 | 11.4094 |
316
+ | 60.6061 | 2000 | 11.3982 |
317
+ | 75.7576 | 2500 | 11.3987 |
318
+ | 90.9091 | 3000 | 11.3946 |
319
+
320
+
321
+ ### Framework Versions
322
+ - Python: 3.11.12
323
+ - Sentence Transformers: 4.1.0
324
+ - Transformers: 4.51.3
325
+ - PyTorch: 2.6.0+cu124
326
+ - Accelerate: 1.6.0
327
+ - Datasets: 3.6.0
328
+ - Tokenizers: 0.21.1
329
+
330
+ ## Citation
331
+
332
+ ### BibTeX
333
+
334
+ #### Sentence Transformers
335
+ ```bibtex
336
+ @inproceedings{reimers-2019-sentence-bert,
337
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
338
+ author = "Reimers, Nils and Gurevych, Iryna",
339
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
340
+ month = "11",
341
+ year = "2019",
342
+ publisher = "Association for Computational Linguistics",
343
+ url = "https://arxiv.org/abs/1908.10084",
344
+ }
345
+ ```
346
+
347
+ #### MatryoshkaLoss
348
+ ```bibtex
349
+ @misc{kusupati2024matryoshka,
350
+ title={Matryoshka Representation Learning},
351
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
352
+ year={2024},
353
+ eprint={2205.13147},
354
+ archivePrefix={arXiv},
355
+ primaryClass={cs.LG}
356
+ }
357
+ ```
358
+
359
+ #### MultipleNegativesRankingLoss
360
+ ```bibtex
361
+ @misc{henderson2017efficient,
362
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
363
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
364
+ year={2017},
365
+ eprint={1705.00652},
366
+ archivePrefix={arXiv},
367
+ primaryClass={cs.CL}
368
+ }
369
+ ```
370
+
371
+ <!--
372
+ ## Glossary
373
+
374
+ *Clearly define terms in order to be accessible across audiences.*
375
+ -->
376
+
377
+ <!--
378
+ ## Model Card Authors
379
+
380
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
381
+ -->
382
+
383
+ <!--
384
+ ## Model Card Contact
385
+
386
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
387
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 1024,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 4096,
12
+ "layer_norm_eps": 1e-12,
13
+ "max_position_embeddings": 512,
14
+ "model_type": "bert",
15
+ "num_attention_heads": 16,
16
+ "num_hidden_layers": 24,
17
+ "pad_token_id": 0,
18
+ "position_embedding_type": "absolute",
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.51.3",
21
+ "type_vocab_size": 2,
22
+ "use_cache": true,
23
+ "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d7c200ab800b176e185beb1fe76dfed77ed37b7ff7b6d63e8c30c73a42369a1
3
+ size 1336413848
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "[PAD]",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "[SEP]",
56
+ "stride": 0,
57
+ "strip_accents": null,
58
+ "tokenize_chinese_chars": true,
59
+ "tokenizer_class": "BertTokenizer",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "[UNK]"
63
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff