Upload folder using huggingface_hub
Browse files- README.md +42 -40
- model.safetensors +1 -1
README.md
CHANGED
|
@@ -4,48 +4,50 @@ tags:
|
|
| 4 |
- sentence-similarity
|
| 5 |
- feature-extraction
|
| 6 |
- generated_from_trainer
|
| 7 |
-
- dataset_size:
|
| 8 |
- loss:MultipleNegativesRankingLoss
|
| 9 |
base_model: BAAI/bge-small-en-v1.5
|
| 10 |
widget:
|
| 11 |
-
- source_sentence:
|
| 12 |
sentences:
|
| 13 |
-
- '[{"get_portfolio(None,True,None)": "portfolio"}, {"
|
| 14 |
-
"
|
| 15 |
-
- '[{"get_portfolio(None,True,None)": "portfolio"}, {"
|
| 16 |
-
|
| 17 |
-
''marketValue''],''multiply'',''div_income'')": "portfolio"}, {"sort(''portfolio'',''div_income'',''desc'')":
|
| 18 |
-
"portfolio"}]'
|
| 19 |
-
- '[{"get_portfolio(None,True,None)": "portfolio"}, {"stress_test(''portfolio'',''nikkei_225'',None,None)":
|
| 20 |
-
"stress_test"}]'
|
| 21 |
-
- source_sentence: What’s the [DATES] trend of the [A_SECTOR] sector
|
| 22 |
-
sentences:
|
| 23 |
-
- '[{"get_portfolio(None,True,None)": "portfolio"}, {"get_attribute(''portfolio'',[''<A_THEME>'',
|
| 24 |
-
''risk''],''<DATES>'')": "portfolio"}, {"filter(''portfolio'',''<A_THEME>'',''>'',''0.01'')":
|
| 25 |
-
"portfolio"}, {"sort(''portfolio'',''risk'',''asc'')": "portfolio"}]'
|
| 26 |
-
- '[{"get_attribute([''<A_SECTOR>''],[''returns''],''<DATES>'')":"sector_returns"}]'
|
| 27 |
- '[{"get_news_articles(None,None,[''<A_SECTOR>''],''<DATES>'')": "news_data"}]'
|
| 28 |
-
- source_sentence:
|
| 29 |
sentences:
|
| 30 |
-
- '[{"
|
| 31 |
-
- '[{"get_portfolio(None,True,None)": "portfolio"}, {"stress_test(''portfolio'',''gold'',None,None)":
|
| 32 |
"stress_test"}]'
|
| 33 |
-
- '[{"get_portfolio(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
"stress_test"}]'
|
| 35 |
-
- source_sentence:
|
| 36 |
sentences:
|
|
|
|
|
|
|
| 37 |
- '[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''asset_class'',''<AN_ASSET_TYPE>'',''portfolio'')":
|
| 38 |
"portfolio"}]'
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
- '[{"get_news_articles(None,None,[''<A_SECTOR>''],''<DATES>'')": "news_data"}]'
|
| 40 |
-
- '[{"get_attribute([''<TICKER>''],[''
|
| 41 |
-
-
|
|
|
|
|
|
|
| 42 |
sentences:
|
| 43 |
-
- '[{"
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
| 49 |
pipeline_tag: sentence-similarity
|
| 50 |
library_name: sentence-transformers
|
| 51 |
---
|
|
@@ -100,9 +102,9 @@ from sentence_transformers import SentenceTransformer
|
|
| 100 |
model = SentenceTransformer("sentence_transformers_model_id")
|
| 101 |
# Run inference
|
| 102 |
sentences = [
|
| 103 |
-
'
|
| 104 |
-
'[{"get_portfolio(None,
|
| 105 |
-
'[{"get_portfolio(None,True,None)": "portfolio"},{"factor_contribution(\'portfolio\',\'<DATES>\',\'
|
| 106 |
]
|
| 107 |
embeddings = model.encode(sentences)
|
| 108 |
print(embeddings.shape)
|
|
@@ -156,19 +158,19 @@ You can finetune this model on your own dataset.
|
|
| 156 |
|
| 157 |
#### Unnamed Dataset
|
| 158 |
|
| 159 |
-
* Size: 1,
|
| 160 |
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
|
| 161 |
* Approximate statistics based on the first 1000 samples:
|
| 162 |
| | sentence_0 | sentence_1 | sentence_2 |
|
| 163 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
| 164 |
| type | string | string | string |
|
| 165 |
-
| details | <ul><li>min: 4 tokens</li><li>mean: 12.37 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean:
|
| 166 |
* Samples:
|
| 167 |
-
| sentence_0
|
| 168 |
-
|
| 169 |
-
| <code>
|
| 170 |
-
| <code>
|
| 171 |
-
| <code>
|
| 172 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 173 |
```json
|
| 174 |
{
|
|
@@ -310,7 +312,7 @@ You can finetune this model on your own dataset.
|
|
| 310 |
### Training Logs
|
| 311 |
| Epoch | Step | Training Loss |
|
| 312 |
|:------:|:----:|:-------------:|
|
| 313 |
-
| 8.
|
| 314 |
|
| 315 |
|
| 316 |
### Framework Versions
|
|
|
|
| 4 |
- sentence-similarity
|
| 5 |
- feature-extraction
|
| 6 |
- generated_from_trainer
|
| 7 |
+
- dataset_size:1954
|
| 8 |
- loss:MultipleNegativesRankingLoss
|
| 9 |
base_model: BAAI/bge-small-en-v1.5
|
| 10 |
widget:
|
| 11 |
+
- source_sentence: 'how much will my portfolio return '
|
| 12 |
sentences:
|
| 13 |
+
- '[{"get_portfolio(None,True,None)": "portfolio"}, {"get_expected_attribute(''portfolio'',[''returns''])":
|
| 14 |
+
"portfolio"}, {"sort(''portfolio'',''returns'',''asc'')": "portfolio"}]'
|
| 15 |
+
- '[{"get_portfolio(None,True,None)": "portfolio"}, {"get_expected_attribute(''portfolio'',[''returns''])":
|
| 16 |
+
"portfolio"}, {"sort(''portfolio'',''returns'',''desc'')": "portfolio"}]'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
- '[{"get_news_articles(None,None,[''<A_SECTOR>''],''<DATES>'')": "news_data"}]'
|
| 18 |
+
- source_sentence: What does the latest consumer sentiment survey mean for my investments
|
| 19 |
sentences:
|
| 20 |
+
- '[{"get_portfolio(None,True,None)": "portfolio"}, {"stress_test(''portfolio'',''consumer_sentiment'',None,''up'')":
|
|
|
|
| 21 |
"stress_test"}]'
|
| 22 |
+
- '[{"get_portfolio([''type''],True,None)": "portfolio"}, {"filter(''portfolio'',''type'',''=='',''MF'')":
|
| 23 |
+
"portfolio"}, {"get_attribute(''portfolio'',[''gains''],''<DATES>'')": "portfolio"},
|
| 24 |
+
{"filter(''portfolio'',''gains'',''>'',''0'')": "portfolio"}, {"sort(''portfolio'',''gains'',''desc'')":
|
| 25 |
+
"portfolio"}]'
|
| 26 |
+
- '[{"get_portfolio(None,True,None)": "portfolio"}, {"stress_test(''portfolio'',''consumer_sentiment'',None,None)":
|
| 27 |
"stress_test"}]'
|
| 28 |
+
- source_sentence: Which of my holdings have the highest expected risk
|
| 29 |
sentences:
|
| 30 |
+
- '[{"get_portfolio(None,True,None)": "portfolio"}, {"get_expected_attribute(''portfolio'',[''volatility''])":
|
| 31 |
+
"portfolio"}, {"sort(''portfolio'',''volatility'',''desc'')": "portfolio"}]'
|
| 32 |
- '[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''asset_class'',''<AN_ASSET_TYPE>'',''portfolio'')":
|
| 33 |
"portfolio"}]'
|
| 34 |
+
- '[{"get_portfolio(None,True,None)": "portfolio"}, {"get_expected_attribute(''portfolio'',[''volatility''])":
|
| 35 |
+
"portfolio"}, {"sort(''portfolio'',''volatility'',''asc'')": "portfolio"}]'
|
| 36 |
+
- source_sentence: how is [TICKER] allocated by region
|
| 37 |
+
sentences:
|
| 38 |
- '[{"get_news_articles(None,None,[''<A_SECTOR>''],''<DATES>'')": "news_data"}]'
|
| 39 |
+
- '[{"get_attribute([''<TICKER>''],[''region''],''<DATES>'')":"<TICKER>_data"}]'
|
| 40 |
+
- '[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''region'',None,''portfolio'')":
|
| 41 |
+
"portfolio"}]'
|
| 42 |
+
- source_sentence: what sectors are contributing the most to my performance [DATES]
|
| 43 |
sentences:
|
| 44 |
+
- '[{"get_portfolio(None,True,None)": "portfolio"}, {"get_attribute(''portfolio'',[''losses''],''<DATES>'')":
|
| 45 |
+
"portfolio"}, {"filter(''portfolio'',''losses'',''<'',''0'')": "portfolio"}, {"sort(''portfolio'',''losses'',''asc'')":
|
| 46 |
+
"portfolio"}]'
|
| 47 |
+
- '[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''sector'',None,''returns'')":
|
| 48 |
+
"portfolio"}]'
|
| 49 |
+
- '[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''sector'',None,''portfolio'')":
|
| 50 |
+
"portfolio"}]'
|
| 51 |
pipeline_tag: sentence-similarity
|
| 52 |
library_name: sentence-transformers
|
| 53 |
---
|
|
|
|
| 102 |
model = SentenceTransformer("sentence_transformers_model_id")
|
| 103 |
# Run inference
|
| 104 |
sentences = [
|
| 105 |
+
'what sectors are contributing the most to my performance [DATES]',
|
| 106 |
+
'[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution(\'portfolio\',\'<DATES>\',\'sector\',None,\'returns\')": "portfolio"}]',
|
| 107 |
+
'[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution(\'portfolio\',\'<DATES>\',\'sector\',None,\'portfolio\')": "portfolio"}]',
|
| 108 |
]
|
| 109 |
embeddings = model.encode(sentences)
|
| 110 |
print(embeddings.shape)
|
|
|
|
| 158 |
|
| 159 |
#### Unnamed Dataset
|
| 160 |
|
| 161 |
+
* Size: 1,954 training samples
|
| 162 |
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
|
| 163 |
* Approximate statistics based on the first 1000 samples:
|
| 164 |
| | sentence_0 | sentence_1 | sentence_2 |
|
| 165 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
| 166 |
| type | string | string | string |
|
| 167 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 12.37 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 72.43 tokens</li><li>max: 229 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 70.45 tokens</li><li>max: 229 tokens</li></ul> |
|
| 168 |
* Samples:
|
| 169 |
+
| sentence_0 | sentence_1 | sentence_2 |
|
| 170 |
+
|:-------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 171 |
+
| <code>show my holdings</code> | <code>[{"get_portfolio(['marketValue'],True,None)": "portfolio"}, {"aggregate('portfolio','ticker','marketValue','sum',None)": "total_value"}]</code> | <code>[{"get_portfolio(['marketValue'],True,None)": "portfolio"}]</code> |
|
| 172 |
+
| <code>[TICKER] news update</code> | <code>[{"get_portfolio(None,False,None)": "portfolio"}, {"filter('portfolio','ticker','==','<TICKER>')": "portfolio"}, {"get_news_articles(['<TICKER>'],None,None,None)": "news_data"}, {"newsletter_search(None,['<TICKER>'],'query',None,False)": "newsletter_chunks"}]</code> | <code>[{"get_attribute(['<TICKER>'],['returns'],'<DATES>')":"<TICKER>_returns"},{"get_news_articles(['<TICKER>'],None,None,'<DATES>')": "news_data"}]</code> |
|
| 173 |
+
| <code>did [TICKER] outperform the market?</code> | <code>[{"compare([['<TICKER>', 'SPY']], None, None)": "comparison_data"}]</code> | <code>[{"get_attribute(['<TICKER>'],['returns'],'<DATES>')":"<TICKER>_returns"},{"get_news_articles(['<TICKER>'],None,None,'<DATES>')": "news_data"}]</code> |
|
| 174 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 175 |
```json
|
| 176 |
{
|
|
|
|
| 312 |
### Training Logs
|
| 313 |
| Epoch | Step | Training Loss |
|
| 314 |
|:------:|:----:|:-------------:|
|
| 315 |
+
| 8.0645 | 500 | 0.6267 |
|
| 316 |
|
| 317 |
|
| 318 |
### Framework Versions
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 133462128
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:324003e94c0004a860bc5b97e45568070214b9f1821e9d117d865a46487eeaae
|
| 3 |
size 133462128
|