AlanFederMagnifi commited on
Commit
399a6dc
·
verified ·
1 Parent(s): 5d321e7

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. README.md +42 -40
  2. model.safetensors +1 -1
README.md CHANGED
@@ -4,48 +4,50 @@ tags:
4
  - sentence-similarity
5
  - feature-extraction
6
  - generated_from_trainer
7
- - dataset_size:1798
8
  - loss:MultipleNegativesRankingLoss
9
  base_model: BAAI/bge-small-en-v1.5
10
  widget:
11
- - source_sentence: How will the NIKKEI 225 affect my portfolio
12
  sentences:
13
- - '[{"get_portfolio(None,True,None)": "portfolio"}, {"stress_test(''portfolio'',''nikkei_225'',None,''up'')":
14
- "stress_test"}]'
15
- - '[{"get_portfolio(None,True,None)": "portfolio"}, {"get_attribute(''portfolio'',[''dividend
16
- yield''],''<DATES>'')": "portfolio"}, {"calculate(''portfolio'',[''dividend yield'',
17
- ''marketValue''],''multiply'',''div_income'')": "portfolio"}, {"sort(''portfolio'',''div_income'',''desc'')":
18
- "portfolio"}]'
19
- - '[{"get_portfolio(None,True,None)": "portfolio"}, {"stress_test(''portfolio'',''nikkei_225'',None,None)":
20
- "stress_test"}]'
21
- - source_sentence: What’s the [DATES] trend of the [A_SECTOR] sector
22
- sentences:
23
- - '[{"get_portfolio(None,True,None)": "portfolio"}, {"get_attribute(''portfolio'',[''<A_THEME>'',
24
- ''risk''],''<DATES>'')": "portfolio"}, {"filter(''portfolio'',''<A_THEME>'',''>'',''0.01'')":
25
- "portfolio"}, {"sort(''portfolio'',''risk'',''asc'')": "portfolio"}]'
26
- - '[{"get_attribute([''<A_SECTOR>''],[''returns''],''<DATES>'')":"sector_returns"}]'
27
  - '[{"get_news_articles(None,None,[''<A_SECTOR>''],''<DATES>'')": "news_data"}]'
28
- - source_sentence: How will rising gold commodities affect my portfolio
29
  sentences:
30
- - '[{"get_attribute([''<TICKER>''],[''returns''],''<DATES>'')":"<TICKER>_returns"}]'
31
- - '[{"get_portfolio(None,True,None)": "portfolio"}, {"stress_test(''portfolio'',''gold'',None,None)":
32
  "stress_test"}]'
33
- - '[{"get_portfolio(None,True,None)": "portfolio"}, {"stress_test(''portfolio'',''gold'',None,''up'')":
 
 
 
 
34
  "stress_test"}]'
35
- - source_sentence: what percent of my account is in [AN_ASSET_TYPE]
36
  sentences:
 
 
37
  - '[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''asset_class'',''<AN_ASSET_TYPE>'',''portfolio'')":
38
  "portfolio"}]'
 
 
 
 
39
  - '[{"get_news_articles(None,None,[''<A_SECTOR>''],''<DATES>'')": "news_data"}]'
40
- - '[{"get_attribute([''<TICKER>''],[''<AN_ASSET_TYPE>''],''<DATES>'')":"<TICKER>_data"}]'
41
- - source_sentence: Can I get a performance check-in
 
 
42
  sentences:
43
- - '[{"search(''query'', ''match_type'', ''<TICKER>'')": "search_results"},{"compare([[''<TICKER>''],''search_results''],
44
- [''yield''], None)": "comparison_data"}]'
45
- - '[{"get_portfolio(None, True, None)": "portfolio"}, {"get_attribute(''portfolio'',[''gains''],''<DATES>'')":
46
- "portfolio"}, {"sort(''portfolio'',''gains'',''desc'')": "portfolio"}]'
47
- - '[{"get_portfolio(None,True,None)": "portfolio"},{"factor_contribution(''portfolio'',''<DATES>'',''security'',''<TICKER>'',''returns'')}":
48
- "portfolio"}, {"get_attribute([''<TICKER>''],[''returns''],''<DATES>'')": "returns_<TICKER>"}]'
 
49
  pipeline_tag: sentence-similarity
50
  library_name: sentence-transformers
51
  ---
@@ -100,9 +102,9 @@ from sentence_transformers import SentenceTransformer
100
  model = SentenceTransformer("sentence_transformers_model_id")
101
  # Run inference
102
  sentences = [
103
- 'Can I get a performance check-in',
104
- '[{"get_portfolio(None, True, None)": "portfolio"}, {"get_attribute(\'portfolio\',[\'gains\'],\'<DATES>\')": "portfolio"}, {"sort(\'portfolio\',\'gains\',\'desc\')": "portfolio"}]',
105
- '[{"get_portfolio(None,True,None)": "portfolio"},{"factor_contribution(\'portfolio\',\'<DATES>\',\'security\',\'<TICKER>\',\'returns\')}": "portfolio"}, {"get_attribute([\'<TICKER>\'],[\'returns\'],\'<DATES>\')": "returns_<TICKER>"}]',
106
  ]
107
  embeddings = model.encode(sentences)
108
  print(embeddings.shape)
@@ -156,19 +158,19 @@ You can finetune this model on your own dataset.
156
 
157
  #### Unnamed Dataset
158
 
159
- * Size: 1,798 training samples
160
  * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
161
  * Approximate statistics based on the first 1000 samples:
162
  | | sentence_0 | sentence_1 | sentence_2 |
163
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
164
  | type | string | string | string |
165
- | details | <ul><li>min: 4 tokens</li><li>mean: 12.37 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 71.59 tokens</li><li>max: 206 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 73.42 tokens</li><li>max: 229 tokens</li></ul> |
166
  * Samples:
167
- | sentence_0 | sentence_1 | sentence_2 |
168
- |:---------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|
169
- | <code>How could changes in the emerging markets index (IEMG) affect my investment portfolio</code> | <code>[{"get_portfolio(None,True,None)": "portfolio"}, {"stress_test('portfolio','iemg',None,None)": "stress_test"}]</code> | <code>[{"get_portfolio(None,True,None)": "portfolio"}, {"stress_test('portfolio','iemg',None,'up')": "stress_test"}]</code> |
170
- | <code>What role has the volatility factor played in my overall returns</code> | <code>[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution('portfolio','<DATES>','factor','volatility','returns')": "portfolio"}]</code> | <code>[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution('portfolio','<DATES>','factor','volatility','portfolio')": "portfolio"}]</code> |
171
- | <code>Is my portfolio overexposed to [A_REGION] country exposure</code> | <code>[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution('portfolio','<DATES>','region','<A_REGION>','portfolio')": "portfolio"}]</code> | <code>[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution('portfolio','<DATES>','theme','<A_THEME>','portfolio')": "portfolio"}]</code> |
172
  * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
173
  ```json
174
  {
@@ -310,7 +312,7 @@ You can finetune this model on your own dataset.
310
  ### Training Logs
311
  | Epoch | Step | Training Loss |
312
  |:------:|:----:|:-------------:|
313
- | 8.7719 | 500 | 0.6004 |
314
 
315
 
316
  ### Framework Versions
 
4
  - sentence-similarity
5
  - feature-extraction
6
  - generated_from_trainer
7
+ - dataset_size:1954
8
  - loss:MultipleNegativesRankingLoss
9
  base_model: BAAI/bge-small-en-v1.5
10
  widget:
11
+ - source_sentence: 'how much will my portfolio return '
12
  sentences:
13
+ - '[{"get_portfolio(None,True,None)": "portfolio"}, {"get_expected_attribute(''portfolio'',[''returns''])":
14
+ "portfolio"}, {"sort(''portfolio'',''returns'',''asc'')": "portfolio"}]'
15
+ - '[{"get_portfolio(None,True,None)": "portfolio"}, {"get_expected_attribute(''portfolio'',[''returns''])":
16
+ "portfolio"}, {"sort(''portfolio'',''returns'',''desc'')": "portfolio"}]'
 
 
 
 
 
 
 
 
 
 
17
  - '[{"get_news_articles(None,None,[''<A_SECTOR>''],''<DATES>'')": "news_data"}]'
18
+ - source_sentence: What does the latest consumer sentiment survey mean for my investments
19
  sentences:
20
+ - '[{"get_portfolio(None,True,None)": "portfolio"}, {"stress_test(''portfolio'',''consumer_sentiment'',None,''up'')":
 
21
  "stress_test"}]'
22
+ - '[{"get_portfolio([''type''],True,None)": "portfolio"}, {"filter(''portfolio'',''type'',''=='',''MF'')":
23
+ "portfolio"}, {"get_attribute(''portfolio'',[''gains''],''<DATES>'')": "portfolio"},
24
+ {"filter(''portfolio'',''gains'',''>'',''0'')": "portfolio"}, {"sort(''portfolio'',''gains'',''desc'')":
25
+ "portfolio"}]'
26
+ - '[{"get_portfolio(None,True,None)": "portfolio"}, {"stress_test(''portfolio'',''consumer_sentiment'',None,None)":
27
  "stress_test"}]'
28
+ - source_sentence: Which of my holdings have the highest expected risk
29
  sentences:
30
+ - '[{"get_portfolio(None,True,None)": "portfolio"}, {"get_expected_attribute(''portfolio'',[''volatility''])":
31
+ "portfolio"}, {"sort(''portfolio'',''volatility'',''desc'')": "portfolio"}]'
32
  - '[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''asset_class'',''<AN_ASSET_TYPE>'',''portfolio'')":
33
  "portfolio"}]'
34
+ - '[{"get_portfolio(None,True,None)": "portfolio"}, {"get_expected_attribute(''portfolio'',[''volatility''])":
35
+ "portfolio"}, {"sort(''portfolio'',''volatility'',''asc'')": "portfolio"}]'
36
+ - source_sentence: how is [TICKER] allocated by region
37
+ sentences:
38
  - '[{"get_news_articles(None,None,[''<A_SECTOR>''],''<DATES>'')": "news_data"}]'
39
+ - '[{"get_attribute([''<TICKER>''],[''region''],''<DATES>'')":"<TICKER>_data"}]'
40
+ - '[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''region'',None,''portfolio'')":
41
+ "portfolio"}]'
42
+ - source_sentence: what sectors are contributing the most to my performance [DATES]
43
  sentences:
44
+ - '[{"get_portfolio(None,True,None)": "portfolio"}, {"get_attribute(''portfolio'',[''losses''],''<DATES>'')":
45
+ "portfolio"}, {"filter(''portfolio'',''losses'',''<'',''0'')": "portfolio"}, {"sort(''portfolio'',''losses'',''asc'')":
46
+ "portfolio"}]'
47
+ - '[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''sector'',None,''returns'')":
48
+ "portfolio"}]'
49
+ - '[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''sector'',None,''portfolio'')":
50
+ "portfolio"}]'
51
  pipeline_tag: sentence-similarity
52
  library_name: sentence-transformers
53
  ---
 
102
  model = SentenceTransformer("sentence_transformers_model_id")
103
  # Run inference
104
  sentences = [
105
+ 'what sectors are contributing the most to my performance [DATES]',
106
+ '[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution(\'portfolio\',\'<DATES>\',\'sector\',None,\'returns\')": "portfolio"}]',
107
+ '[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution(\'portfolio\',\'<DATES>\',\'sector\',None,\'portfolio\')": "portfolio"}]',
108
  ]
109
  embeddings = model.encode(sentences)
110
  print(embeddings.shape)
 
158
 
159
  #### Unnamed Dataset
160
 
161
+ * Size: 1,954 training samples
162
  * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
163
  * Approximate statistics based on the first 1000 samples:
164
  | | sentence_0 | sentence_1 | sentence_2 |
165
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
166
  | type | string | string | string |
167
+ | details | <ul><li>min: 4 tokens</li><li>mean: 12.37 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 72.43 tokens</li><li>max: 229 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 70.45 tokens</li><li>max: 229 tokens</li></ul> |
168
  * Samples:
169
+ | sentence_0 | sentence_1 | sentence_2 |
170
+ |:-------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|
171
+ | <code>show my holdings</code> | <code>[{"get_portfolio(['marketValue'],True,None)": "portfolio"}, {"aggregate('portfolio','ticker','marketValue','sum',None)": "total_value"}]</code> | <code>[{"get_portfolio(['marketValue'],True,None)": "portfolio"}]</code> |
172
+ | <code>[TICKER] news update</code> | <code>[{"get_portfolio(None,False,None)": "portfolio"}, {"filter('portfolio','ticker','==','<TICKER>')": "portfolio"}, {"get_news_articles(['<TICKER>'],None,None,None)": "news_data"}, {"newsletter_search(None,['<TICKER>'],'query',None,False)": "newsletter_chunks"}]</code> | <code>[{"get_attribute(['<TICKER>'],['returns'],'<DATES>')":"<TICKER>_returns"},{"get_news_articles(['<TICKER>'],None,None,'<DATES>')": "news_data"}]</code> |
173
+ | <code>did [TICKER] outperform the market?</code> | <code>[{"compare([['<TICKER>', 'SPY']], None, None)": "comparison_data"}]</code> | <code>[{"get_attribute(['<TICKER>'],['returns'],'<DATES>')":"<TICKER>_returns"},{"get_news_articles(['<TICKER>'],None,None,'<DATES>')": "news_data"}]</code> |
174
  * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
175
  ```json
176
  {
 
312
  ### Training Logs
313
  | Epoch | Step | Training Loss |
314
  |:------:|:----:|:-------------:|
315
+ | 8.0645 | 500 | 0.6267 |
316
 
317
 
318
  ### Framework Versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2585cc9ff5be06fa69a58d4149bce73f6c6dba07988d6704381ca61ff41ea514
3
  size 133462128
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:324003e94c0004a860bc5b97e45568070214b9f1821e9d117d865a46487eeaae
3
  size 133462128