Upload Lfm2VlForConditionalGeneration
Browse files- README.md +201 -0
- config.json +99 -0
- generation_config.json +7 -0
- model.safetensors +3 -0
- modeling_lfm2_vl.py +688 -0
README.md
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- trl
|
5 |
+
- sft
|
6 |
+
---
|
7 |
+
|
8 |
+
# Model Card for Model ID
|
9 |
+
|
10 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
## Model Details
|
15 |
+
|
16 |
+
### Model Description
|
17 |
+
|
18 |
+
<!-- Provide a longer summary of what this model is. -->
|
19 |
+
|
20 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
21 |
+
|
22 |
+
- **Developed by:** [More Information Needed]
|
23 |
+
- **Funded by [optional]:** [More Information Needed]
|
24 |
+
- **Shared by [optional]:** [More Information Needed]
|
25 |
+
- **Model type:** [More Information Needed]
|
26 |
+
- **Language(s) (NLP):** [More Information Needed]
|
27 |
+
- **License:** [More Information Needed]
|
28 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
29 |
+
|
30 |
+
### Model Sources [optional]
|
31 |
+
|
32 |
+
<!-- Provide the basic links for the model. -->
|
33 |
+
|
34 |
+
- **Repository:** [More Information Needed]
|
35 |
+
- **Paper [optional]:** [More Information Needed]
|
36 |
+
- **Demo [optional]:** [More Information Needed]
|
37 |
+
|
38 |
+
## Uses
|
39 |
+
|
40 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
41 |
+
|
42 |
+
### Direct Use
|
43 |
+
|
44 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
45 |
+
|
46 |
+
[More Information Needed]
|
47 |
+
|
48 |
+
### Downstream Use [optional]
|
49 |
+
|
50 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
51 |
+
|
52 |
+
[More Information Needed]
|
53 |
+
|
54 |
+
### Out-of-Scope Use
|
55 |
+
|
56 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
57 |
+
|
58 |
+
[More Information Needed]
|
59 |
+
|
60 |
+
## Bias, Risks, and Limitations
|
61 |
+
|
62 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
63 |
+
|
64 |
+
[More Information Needed]
|
65 |
+
|
66 |
+
### Recommendations
|
67 |
+
|
68 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
69 |
+
|
70 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
71 |
+
|
72 |
+
## How to Get Started with the Model
|
73 |
+
|
74 |
+
Use the code below to get started with the model.
|
75 |
+
|
76 |
+
[More Information Needed]
|
77 |
+
|
78 |
+
## Training Details
|
79 |
+
|
80 |
+
### Training Data
|
81 |
+
|
82 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
83 |
+
|
84 |
+
[More Information Needed]
|
85 |
+
|
86 |
+
### Training Procedure
|
87 |
+
|
88 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
89 |
+
|
90 |
+
#### Preprocessing [optional]
|
91 |
+
|
92 |
+
[More Information Needed]
|
93 |
+
|
94 |
+
|
95 |
+
#### Training Hyperparameters
|
96 |
+
|
97 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
98 |
+
|
99 |
+
#### Speeds, Sizes, Times [optional]
|
100 |
+
|
101 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
102 |
+
|
103 |
+
[More Information Needed]
|
104 |
+
|
105 |
+
## Evaluation
|
106 |
+
|
107 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
108 |
+
|
109 |
+
### Testing Data, Factors & Metrics
|
110 |
+
|
111 |
+
#### Testing Data
|
112 |
+
|
113 |
+
<!-- This should link to a Dataset Card if possible. -->
|
114 |
+
|
115 |
+
[More Information Needed]
|
116 |
+
|
117 |
+
#### Factors
|
118 |
+
|
119 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
120 |
+
|
121 |
+
[More Information Needed]
|
122 |
+
|
123 |
+
#### Metrics
|
124 |
+
|
125 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
126 |
+
|
127 |
+
[More Information Needed]
|
128 |
+
|
129 |
+
### Results
|
130 |
+
|
131 |
+
[More Information Needed]
|
132 |
+
|
133 |
+
#### Summary
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
## Model Examination [optional]
|
138 |
+
|
139 |
+
<!-- Relevant interpretability work for the model goes here -->
|
140 |
+
|
141 |
+
[More Information Needed]
|
142 |
+
|
143 |
+
## Environmental Impact
|
144 |
+
|
145 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
146 |
+
|
147 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
148 |
+
|
149 |
+
- **Hardware Type:** [More Information Needed]
|
150 |
+
- **Hours used:** [More Information Needed]
|
151 |
+
- **Cloud Provider:** [More Information Needed]
|
152 |
+
- **Compute Region:** [More Information Needed]
|
153 |
+
- **Carbon Emitted:** [More Information Needed]
|
154 |
+
|
155 |
+
## Technical Specifications [optional]
|
156 |
+
|
157 |
+
### Model Architecture and Objective
|
158 |
+
|
159 |
+
[More Information Needed]
|
160 |
+
|
161 |
+
### Compute Infrastructure
|
162 |
+
|
163 |
+
[More Information Needed]
|
164 |
+
|
165 |
+
#### Hardware
|
166 |
+
|
167 |
+
[More Information Needed]
|
168 |
+
|
169 |
+
#### Software
|
170 |
+
|
171 |
+
[More Information Needed]
|
172 |
+
|
173 |
+
## Citation [optional]
|
174 |
+
|
175 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
176 |
+
|
177 |
+
**BibTeX:**
|
178 |
+
|
179 |
+
[More Information Needed]
|
180 |
+
|
181 |
+
**APA:**
|
182 |
+
|
183 |
+
[More Information Needed]
|
184 |
+
|
185 |
+
## Glossary [optional]
|
186 |
+
|
187 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
188 |
+
|
189 |
+
[More Information Needed]
|
190 |
+
|
191 |
+
## More Information [optional]
|
192 |
+
|
193 |
+
[More Information Needed]
|
194 |
+
|
195 |
+
## Model Card Authors [optional]
|
196 |
+
|
197 |
+
[More Information Needed]
|
198 |
+
|
199 |
+
## Model Card Contact
|
200 |
+
|
201 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Lfm2VlForConditionalGeneration"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "modeling_lfm2_vl.Lfm2VlConfig",
|
7 |
+
"AutoModelForImageTextToText": "modeling_lfm2_vl.Lfm2VlForConditionalGeneration"
|
8 |
+
},
|
9 |
+
"do_image_splitting": true,
|
10 |
+
"downsample_factor": 2,
|
11 |
+
"encoder_patch_size": 16,
|
12 |
+
"image_token_index": 396,
|
13 |
+
"max_image_tokens": 256,
|
14 |
+
"max_num_patches": 1024,
|
15 |
+
"max_pixels_tolerance": 2.0,
|
16 |
+
"max_tiles": 10,
|
17 |
+
"min_image_tokens": 64,
|
18 |
+
"min_tiles": 2,
|
19 |
+
"model_type": "lfm2-vl",
|
20 |
+
"projector_bias": true,
|
21 |
+
"projector_hidden_act": "gelu",
|
22 |
+
"projector_hidden_size": 2560,
|
23 |
+
"text_config": {
|
24 |
+
"_name_or_path": "LiquidAI/LFM2-350M",
|
25 |
+
"architectures": [
|
26 |
+
"Lfm2ForCausalLM"
|
27 |
+
],
|
28 |
+
"block_auto_adjust_ff_dim": true,
|
29 |
+
"block_dim": 1024,
|
30 |
+
"block_ff_dim": 6656,
|
31 |
+
"block_ffn_dim_multiplier": 1.0,
|
32 |
+
"block_mlp_init_scale": 1.0,
|
33 |
+
"block_multiple_of": 256,
|
34 |
+
"block_norm_eps": 1e-05,
|
35 |
+
"block_out_init_scale": 1.0,
|
36 |
+
"block_use_swiglu": true,
|
37 |
+
"block_use_xavier_init": true,
|
38 |
+
"conv_L_cache": 3,
|
39 |
+
"conv_bias": false,
|
40 |
+
"conv_dim": 1024,
|
41 |
+
"conv_dim_out": 1024,
|
42 |
+
"conv_use_xavier_init": true,
|
43 |
+
"eos_token_id": 7,
|
44 |
+
"hidden_size": 1024,
|
45 |
+
"initializer_range": 0.02,
|
46 |
+
"intermediate_size": 6656,
|
47 |
+
"layer_types": [
|
48 |
+
"conv",
|
49 |
+
"conv",
|
50 |
+
"full_attention",
|
51 |
+
"conv",
|
52 |
+
"conv",
|
53 |
+
"full_attention",
|
54 |
+
"conv",
|
55 |
+
"conv",
|
56 |
+
"full_attention",
|
57 |
+
"conv",
|
58 |
+
"full_attention",
|
59 |
+
"conv",
|
60 |
+
"full_attention",
|
61 |
+
"conv",
|
62 |
+
"full_attention",
|
63 |
+
"conv"
|
64 |
+
],
|
65 |
+
"max_position_embeddings": 128000,
|
66 |
+
"model_type": "lfm2",
|
67 |
+
"norm_eps": 1e-05,
|
68 |
+
"num_attention_heads": 16,
|
69 |
+
"num_heads": 16,
|
70 |
+
"num_hidden_layers": 16,
|
71 |
+
"num_key_value_heads": 8,
|
72 |
+
"rope_theta": 1000000.0,
|
73 |
+
"torch_dtype": "bfloat16",
|
74 |
+
"use_cache": true,
|
75 |
+
"use_pos_enc": true,
|
76 |
+
"vocab_size": 65536
|
77 |
+
},
|
78 |
+
"tile_size": 512,
|
79 |
+
"torch_dtype": "bfloat16",
|
80 |
+
"transformers_version": "4.55.0",
|
81 |
+
"use_image_special_tokens": true,
|
82 |
+
"use_thumbnail": false,
|
83 |
+
"vision_config": {
|
84 |
+
"attention_dropout": 0.0,
|
85 |
+
"hidden_act": "gelu_pytorch_tanh",
|
86 |
+
"hidden_size": 768,
|
87 |
+
"intermediate_size": 3072,
|
88 |
+
"layer_norm_eps": 1e-06,
|
89 |
+
"model_type": "siglip2_vision_model",
|
90 |
+
"num_attention_heads": 12,
|
91 |
+
"num_channels": 3,
|
92 |
+
"num_hidden_layers": 12,
|
93 |
+
"num_patches": 256,
|
94 |
+
"patch_size": 16,
|
95 |
+
"torch_dtype": "bfloat16",
|
96 |
+
"vision_use_head": false
|
97 |
+
},
|
98 |
+
"vision_feature_layer": -1
|
99 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 7,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.55.0"
|
7 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9f069717ad508e0f917d988892832fe17c90f706e7a61289cc22b512c9dbb23
|
3 |
+
size 901692416
|
modeling_lfm2_vl.py
ADDED
@@ -0,0 +1,688 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""PyTorch LFM2-VL model."""
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from transformers import AutoConfig, AutoModel
|
8 |
+
from transformers.activations import ACT2FN
|
9 |
+
from transformers.cache_utils import Cache
|
10 |
+
from transformers.configuration_utils import PretrainedConfig
|
11 |
+
from transformers.generation import GenerationMixin
|
12 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
13 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
|
14 |
+
from transformers.modeling_utils import PreTrainedModel
|
15 |
+
from transformers.models.lfm2.configuration_lfm2 import Lfm2Config
|
16 |
+
from transformers.models.siglip2.configuration_siglip2 import Siglip2VisionConfig
|
17 |
+
from transformers.models.siglip2.modeling_siglip2 import Siglip2VisionModel
|
18 |
+
from transformers.processing_utils import Unpack
|
19 |
+
from transformers.utils import can_return_tuple, logging
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
class Lfm2VlConfig(PretrainedConfig):
|
25 |
+
r"""
|
26 |
+
This is the configuration class to store the configuration of a [`Lfm2VlForConditionalGeneration`]. It is used to instantiate an
|
27 |
+
Lfm2Vl model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
28 |
+
with the defaults will yield a similar configuration to that of the Lfm2-VL-1.6B.
|
29 |
+
|
30 |
+
e.g. [LiquidAI/LFM2-VL-1.6B](https://huggingface.co/LiquidAI/LFM2-VL-1.6B)
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
vision_config (`AutoConfig | dict`, *optional*, defaults to `Siglip2ImageConfig`):
|
37 |
+
The config object or dictionary of the vision backbone.
|
38 |
+
text_config (`AutoConfig | dict`, *optional*, defaults to `Lfm2Config`):
|
39 |
+
The config object or dictionary of the text backbone.
|
40 |
+
image_token_id (`int`, *optional*, defaults to 396):
|
41 |
+
The image token index to encode the image prompt.
|
42 |
+
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
|
43 |
+
The activation function used by the multimodal projector.
|
44 |
+
projector_hidden_size (`int`, *optional*, defaults to 2056):
|
45 |
+
The hidden size of the multimodal projector.
|
46 |
+
projector_bias (`bool`, *optional*, defaults to `True`):
|
47 |
+
Whether to use bias in the multimodal projector.
|
48 |
+
downsample_factor (`int`, *optional*, defaults to 2):
|
49 |
+
The downsample_factor factor of the vision backbone.
|
50 |
+
vision_feature_layer (`int`, *optional*, defaults to -1):
|
51 |
+
The layer of the vision tower to use as features.
|
52 |
+
min_image_tokens (`int`, *optional*, defaults to 64):
|
53 |
+
The minimum number of image tokens for smart resize.
|
54 |
+
max_image_tokens (`int`, *optional*, defaults to 256):
|
55 |
+
The maximum number of image tokens for smart resize.
|
56 |
+
encoder_patch_size (`int`, *optional*, defaults to 16):
|
57 |
+
The patch size of the encoder.
|
58 |
+
max_num_patches (`int`, *optional*, defaults to 1024):
|
59 |
+
The maximum number of image tokens passed to the encoder per image or tile.
|
60 |
+
use_image_special_tokens (`bool`, *optional*, defaults to `True`):
|
61 |
+
Whether to use image special tokens.
|
62 |
+
do_image_splitting (`bool`, *optional*, defaults to `True`):
|
63 |
+
Whether to split large images into tiles.
|
64 |
+
min_tiles (`int`, *optional*, defaults to 2):
|
65 |
+
The minimum number of tiles to split the image into.
|
66 |
+
max_tiles (`int`, *optional*, defaults to 10):
|
67 |
+
The maximum number of tiles to split the image into.
|
68 |
+
tile_size (`int`, *optional*, defaults to 512):
|
69 |
+
The size of the tile to split the image into.
|
70 |
+
max_pixels_tolerance (`float`, *optional*, defaults to 2.0):
|
71 |
+
The maximum tolerance for the number of pixels in the image before splitting.
|
72 |
+
use_thumbnail (`bool`, *optional*, defaults to `True`):
|
73 |
+
Whether to append the thumbnail of the image when splitting.
|
74 |
+
"""
|
75 |
+
|
76 |
+
model_type = "lfm2-vl"
|
77 |
+
attribute_map = {
|
78 |
+
"image_token_id": "image_token_index",
|
79 |
+
}
|
80 |
+
sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig}
|
81 |
+
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
vision_config=None,
|
85 |
+
text_config=None,
|
86 |
+
image_token_index=396,
|
87 |
+
projector_hidden_act="gelu",
|
88 |
+
projector_hidden_size=2560,
|
89 |
+
projector_bias=True,
|
90 |
+
downsample_factor=2,
|
91 |
+
vision_feature_layer=-1,
|
92 |
+
min_image_tokens=64,
|
93 |
+
max_image_tokens=256,
|
94 |
+
encoder_patch_size=16,
|
95 |
+
max_num_patches=1024,
|
96 |
+
use_image_special_tokens=True,
|
97 |
+
do_image_splitting=True,
|
98 |
+
min_tiles=2,
|
99 |
+
max_tiles=10,
|
100 |
+
tile_size=512,
|
101 |
+
max_pixels_tolerance=2.0,
|
102 |
+
use_thumbnail=True,
|
103 |
+
torch_dtype=torch.bfloat16,
|
104 |
+
**kwargs,
|
105 |
+
):
|
106 |
+
self.vision_config = vision_config
|
107 |
+
self.text_config = text_config
|
108 |
+
self.image_token_index = image_token_index
|
109 |
+
self.projector_hidden_act = projector_hidden_act
|
110 |
+
self.projector_hidden_size = projector_hidden_size
|
111 |
+
self.projector_bias = projector_bias
|
112 |
+
self.downsample_factor = downsample_factor
|
113 |
+
self.vision_feature_layer = vision_feature_layer
|
114 |
+
self.min_image_tokens = min_image_tokens
|
115 |
+
self.max_image_tokens = max_image_tokens
|
116 |
+
self.encoder_patch_size = encoder_patch_size
|
117 |
+
self.max_num_patches = max_num_patches
|
118 |
+
self.use_image_special_tokens = use_image_special_tokens
|
119 |
+
self.do_image_splitting = do_image_splitting
|
120 |
+
self.min_tiles = min_tiles
|
121 |
+
self.max_tiles = max_tiles
|
122 |
+
self.tile_size = tile_size
|
123 |
+
self.max_pixels_tolerance = max_pixels_tolerance
|
124 |
+
self.use_thumbnail = use_thumbnail
|
125 |
+
self.torch_dtype = torch_dtype
|
126 |
+
|
127 |
+
if isinstance(vision_config, dict):
|
128 |
+
vision_config = Siglip2VisionConfig(**vision_config)
|
129 |
+
elif vision_config is None:
|
130 |
+
vision_config = Siglip2VisionConfig()
|
131 |
+
self.vision_config = vision_config
|
132 |
+
|
133 |
+
self.vision_config = vision_config
|
134 |
+
|
135 |
+
if isinstance(text_config, dict):
|
136 |
+
text_config = Lfm2Config(**text_config)
|
137 |
+
elif text_config is None:
|
138 |
+
text_config = Lfm2Config()
|
139 |
+
|
140 |
+
self.text_config = text_config
|
141 |
+
|
142 |
+
super().__init__(**kwargs)
|
143 |
+
|
144 |
+
|
145 |
+
@dataclass
|
146 |
+
class Lfm2VlModelOutputWithPast(BaseModelOutputWithPast):
|
147 |
+
r"""
|
148 |
+
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
149 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
150 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
151 |
+
|
152 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
153 |
+
`past_key_values` input) to speed up sequential decoding.
|
154 |
+
image_hidden_states (`torch.FloatTensor`, *optional*):
|
155 |
+
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
|
156 |
+
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
157 |
+
"""
|
158 |
+
|
159 |
+
image_hidden_states: torch.FloatTensor | None = None
|
160 |
+
|
161 |
+
|
162 |
+
@dataclass
|
163 |
+
class Lfm2VlCausalLMOutputWithPast(ModelOutput):
|
164 |
+
r"""
|
165 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
166 |
+
Language modeling loss (for next-token prediction).
|
167 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
168 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
169 |
+
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
170 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
171 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
172 |
+
|
173 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
174 |
+
`past_key_values` input) to speed up sequential decoding.
|
175 |
+
image_hidden_states (`torch.FloatTensor`, *optional*):
|
176 |
+
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
|
177 |
+
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
178 |
+
"""
|
179 |
+
|
180 |
+
loss: torch.FloatTensor | None = None
|
181 |
+
logits: torch.FloatTensor | None = None
|
182 |
+
past_key_values: list[torch.FloatTensor] | None = None
|
183 |
+
hidden_states: tuple[torch.FloatTensor] | None = None
|
184 |
+
attentions: tuple[torch.FloatTensor] | None = None
|
185 |
+
image_hidden_states: torch.FloatTensor | None = None
|
186 |
+
|
187 |
+
|
188 |
+
class Lfm2VlMultiModalProjector(nn.Module):
|
189 |
+
def __init__(self, config: Lfm2VlConfig):
|
190 |
+
super().__init__()
|
191 |
+
in_channels = config.vision_config.hidden_size * (config.downsample_factor**2)
|
192 |
+
self.layer_norm = nn.LayerNorm(in_channels)
|
193 |
+
self.linear_1 = nn.Linear(
|
194 |
+
in_channels,
|
195 |
+
config.projector_hidden_size,
|
196 |
+
bias=config.projector_bias,
|
197 |
+
)
|
198 |
+
self.act = ACT2FN[config.projector_hidden_act]
|
199 |
+
self.linear_2 = nn.Linear(
|
200 |
+
config.projector_hidden_size,
|
201 |
+
config.text_config.hidden_size,
|
202 |
+
bias=config.projector_bias,
|
203 |
+
)
|
204 |
+
|
205 |
+
def forward(self, image_features):
|
206 |
+
image_features = self.layer_norm(image_features)
|
207 |
+
hidden_states = self.linear_1(image_features)
|
208 |
+
hidden_states = self.act(hidden_states)
|
209 |
+
hidden_states = self.linear_2(hidden_states)
|
210 |
+
return hidden_states
|
211 |
+
|
212 |
+
|
213 |
+
class PixelUnshuffleBlock(nn.Module):
|
214 |
+
def __init__(self, factor: int):
|
215 |
+
super().__init__()
|
216 |
+
self.factor = factor
|
217 |
+
|
218 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
219 |
+
n, w, h, c = x.size()
|
220 |
+
if w % self.factor != 0:
|
221 |
+
x = torch.concat(
|
222 |
+
[
|
223 |
+
x,
|
224 |
+
torch.zeros(
|
225 |
+
(n, self.factor - (w % self.factor), h, c), dtype=x.dtype
|
226 |
+
).to(x.device),
|
227 |
+
],
|
228 |
+
dim=1,
|
229 |
+
).contiguous()
|
230 |
+
n, w, h, c = x.size()
|
231 |
+
x = x.contiguous()
|
232 |
+
if h % self.factor != 0:
|
233 |
+
x = torch.concat(
|
234 |
+
[
|
235 |
+
x,
|
236 |
+
torch.zeros(
|
237 |
+
(n, w, self.factor - (h % self.factor), c), dtype=x.dtype
|
238 |
+
).to(x.device),
|
239 |
+
],
|
240 |
+
dim=2,
|
241 |
+
).contiguous()
|
242 |
+
n, w, h, c = x.size()
|
243 |
+
x = x.view(n, w, int(h / self.factor), int(c * self.factor))
|
244 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
245 |
+
x = x.view(
|
246 |
+
n, int(h / self.factor), int(w / self.factor), int(c * self.factor**2)
|
247 |
+
)
|
248 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
249 |
+
return x
|
250 |
+
|
251 |
+
|
252 |
+
class Lfm2VlPreTrainedModel(PreTrainedModel):
|
253 |
+
config: Lfm2VlConfig
|
254 |
+
base_model_prefix = ""
|
255 |
+
supports_gradient_checkpointing = True
|
256 |
+
_skip_keys_device_placement = ["past_key_values"]
|
257 |
+
|
258 |
+
_supports_flash_attn = True
|
259 |
+
_supports_sdpa = True
|
260 |
+
|
261 |
+
_can_compile_fullgraph = False
|
262 |
+
_supports_flex_attn = True
|
263 |
+
_supports_attention_backend = True
|
264 |
+
|
265 |
+
|
266 |
+
class Lfm2VlModel(Lfm2VlPreTrainedModel):
|
267 |
+
_checkpoint_conversion_mapping = {"language_model.model": "language_model"}
|
268 |
+
|
269 |
+
def __init__(self, config: Lfm2VlConfig):
|
270 |
+
super().__init__(config)
|
271 |
+
self.vision_tower = Siglip2VisionModel(config.vision_config)
|
272 |
+
|
273 |
+
if config.vision_feature_layer != -1:
|
274 |
+
self.vision_tower.vision_model.encoder.layers = (
|
275 |
+
self.vision_tower.vision_model.encoder.layers[
|
276 |
+
: config.vision_feature_layer + 1
|
277 |
+
]
|
278 |
+
)
|
279 |
+
if config.downsample_factor > 1:
|
280 |
+
self.pixel_unshuffle = PixelUnshuffleBlock(config.downsample_factor)
|
281 |
+
else:
|
282 |
+
self.pixel_unshuffle = nn.Identity()
|
283 |
+
|
284 |
+
self.multi_modal_projector = Lfm2VlMultiModalProjector(config)
|
285 |
+
self.language_model = AutoModel.from_config(config.text_config)
|
286 |
+
self.post_init()
|
287 |
+
|
288 |
+
def get_input_embeddings(self):
|
289 |
+
return self.language_model.get_input_embeddings()
|
290 |
+
|
291 |
+
def set_input_embeddings(self, value):
|
292 |
+
self.language_model.set_input_embeddings(value)
|
293 |
+
|
294 |
+
def set_decoder(self, decoder):
|
295 |
+
self.language_model = decoder
|
296 |
+
|
297 |
+
def get_decoder(self):
|
298 |
+
return self.language_model
|
299 |
+
|
300 |
+
def get_image_features(
|
301 |
+
self,
|
302 |
+
pixel_values: torch.FloatTensor,
|
303 |
+
spatial_shapes: torch.Tensor,
|
304 |
+
pixel_attention_mask: torch.Tensor,
|
305 |
+
**kwargs,
|
306 |
+
) -> list[torch.Tensor]:
|
307 |
+
"""
|
308 |
+
Obtains image last hidden states from the vision tower and apply multimodal projection.
|
309 |
+
|
310 |
+
Args:
|
311 |
+
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`):
|
312 |
+
The tensors corresponding to the input images.
|
313 |
+
spatial_shapes (`torch.Tensor` of shape `(batch_size, 2)`):
|
314 |
+
The spatial shapes of the input images.
|
315 |
+
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, height, width)`):
|
316 |
+
The pixel attention mask of the input images.
|
317 |
+
Returns:
|
318 |
+
image_features (`list[torch.Tensor]`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
|
319 |
+
"""
|
320 |
+
image_outputs = self.vision_tower(
|
321 |
+
pixel_values=pixel_values,
|
322 |
+
spatial_shapes=spatial_shapes,
|
323 |
+
pixel_attention_mask=pixel_attention_mask,
|
324 |
+
).last_hidden_state
|
325 |
+
|
326 |
+
img_feature_lengths = pixel_attention_mask.sum(dim=1)
|
327 |
+
image_features = []
|
328 |
+
|
329 |
+
for img_idx in range(image_outputs.size(0)):
|
330 |
+
feature = image_outputs[img_idx]
|
331 |
+
# unpad the image representation
|
332 |
+
feature = feature[: img_feature_lengths[img_idx], :].unsqueeze(0)
|
333 |
+
|
334 |
+
feature_org_h, feature_org_w = spatial_shapes[img_idx]
|
335 |
+
feature = feature.reshape(1, feature_org_h, feature_org_w, -1)
|
336 |
+
feature = self.pixel_unshuffle(feature)
|
337 |
+
|
338 |
+
# project the image representation
|
339 |
+
img_embedding = self.multi_modal_projector(feature)
|
340 |
+
|
341 |
+
# flatten here to handle variable length in naflex
|
342 |
+
img_embedding = img_embedding.reshape(-1, img_embedding.size(-1))
|
343 |
+
image_features.append(img_embedding)
|
344 |
+
|
345 |
+
return image_features
|
346 |
+
|
347 |
+
def get_placeholder_mask(
|
348 |
+
self,
|
349 |
+
input_ids: torch.LongTensor | None,
|
350 |
+
inputs_embeds: torch.FloatTensor,
|
351 |
+
image_features: torch.FloatTensor,
|
352 |
+
):
|
353 |
+
"""
|
354 |
+
Obtains multimodal placeholdr mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is
|
355 |
+
equal to the length of multimodal features. If the lengths are different, an error is raised.
|
356 |
+
"""
|
357 |
+
if input_ids is None:
|
358 |
+
special_image_mask = inputs_embeds == self.get_input_embeddings()(
|
359 |
+
torch.tensor(
|
360 |
+
self.config.image_token_id,
|
361 |
+
dtype=torch.long,
|
362 |
+
device=inputs_embeds.device,
|
363 |
+
)
|
364 |
+
)
|
365 |
+
special_image_mask = special_image_mask.all(-1)
|
366 |
+
else:
|
367 |
+
special_image_mask = input_ids == self.config.image_token_id
|
368 |
+
n_image_tokens = special_image_mask.sum()
|
369 |
+
special_image_mask = (
|
370 |
+
special_image_mask.unsqueeze(-1)
|
371 |
+
.expand_as(inputs_embeds)
|
372 |
+
.to(inputs_embeds.device)
|
373 |
+
)
|
374 |
+
n_image_features = image_features.shape[0]
|
375 |
+
if inputs_embeds[special_image_mask].numel() != image_features.numel():
|
376 |
+
raise ValueError(
|
377 |
+
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
378 |
+
)
|
379 |
+
return special_image_mask
|
380 |
+
|
381 |
+
@can_return_tuple
|
382 |
+
def forward(
|
383 |
+
self,
|
384 |
+
input_ids: torch.LongTensor = None,
|
385 |
+
attention_mask: torch.Tensor | None = None,
|
386 |
+
position_ids: torch.LongTensor | None = None,
|
387 |
+
pixel_values: torch.FloatTensor = None,
|
388 |
+
spatial_shapes: torch.Tensor = None,
|
389 |
+
pixel_attention_mask: torch.Tensor = None,
|
390 |
+
past_key_values: Cache | None = None,
|
391 |
+
inputs_embeds: torch.FloatTensor | None = None,
|
392 |
+
use_cache: bool | None = None,
|
393 |
+
output_attentions: bool | None = None,
|
394 |
+
output_hidden_states: bool | None = None,
|
395 |
+
return_dict: bool | None = None,
|
396 |
+
cache_position: torch.LongTensor | None = None,
|
397 |
+
image_sizes: torch.Tensor = None,
|
398 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
399 |
+
) -> tuple | Lfm2VlModelOutputWithPast:
|
400 |
+
"""
|
401 |
+
spatial_shapes (`torch.Tensor` of shape `(batch_size, 2)`, *optional*):
|
402 |
+
The spatial shapes of the input images.
|
403 |
+
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, height, width)`, *optional*):
|
404 |
+
The pixel attention mask of the input images.
|
405 |
+
"""
|
406 |
+
output_attentions = (
|
407 |
+
output_attentions
|
408 |
+
if output_attentions is not None
|
409 |
+
else self.config.output_attentions
|
410 |
+
)
|
411 |
+
output_hidden_states = (
|
412 |
+
output_hidden_states
|
413 |
+
if output_hidden_states is not None
|
414 |
+
else self.config.output_hidden_states
|
415 |
+
)
|
416 |
+
return_dict = (
|
417 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
418 |
+
)
|
419 |
+
|
420 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
421 |
+
raise ValueError(
|
422 |
+
"You must specify exactly one of input_ids or inputs_embeds"
|
423 |
+
)
|
424 |
+
|
425 |
+
if inputs_embeds is None:
|
426 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
427 |
+
|
428 |
+
if pixel_values is not None:
|
429 |
+
image_features = self.get_image_features(
|
430 |
+
pixel_values=pixel_values,
|
431 |
+
spatial_shapes=spatial_shapes,
|
432 |
+
pixel_attention_mask=pixel_attention_mask,
|
433 |
+
)
|
434 |
+
image_features = torch.cat(image_features, dim=0).to(
|
435 |
+
inputs_embeds.device, inputs_embeds.dtype
|
436 |
+
)
|
437 |
+
special_image_mask = self.get_placeholder_mask(
|
438 |
+
input_ids=input_ids,
|
439 |
+
inputs_embeds=inputs_embeds,
|
440 |
+
image_features=image_features,
|
441 |
+
)
|
442 |
+
inputs_embeds = inputs_embeds.masked_scatter(
|
443 |
+
special_image_mask, image_features
|
444 |
+
)
|
445 |
+
|
446 |
+
outputs = self.language_model(
|
447 |
+
attention_mask=attention_mask,
|
448 |
+
position_ids=position_ids,
|
449 |
+
past_key_values=past_key_values,
|
450 |
+
inputs_embeds=inputs_embeds,
|
451 |
+
use_cache=use_cache,
|
452 |
+
output_attentions=output_attentions,
|
453 |
+
output_hidden_states=output_hidden_states,
|
454 |
+
return_dict=True,
|
455 |
+
cache_position=cache_position,
|
456 |
+
**kwargs,
|
457 |
+
)
|
458 |
+
|
459 |
+
return Lfm2VlModelOutputWithPast(
|
460 |
+
last_hidden_state=outputs.last_hidden_state,
|
461 |
+
past_key_values=outputs.past_key_values,
|
462 |
+
hidden_states=outputs.hidden_states,
|
463 |
+
attentions=outputs.attentions,
|
464 |
+
image_hidden_states=image_features if pixel_values is not None else None,
|
465 |
+
)
|
466 |
+
|
467 |
+
|
468 |
+
class Lfm2VlForConditionalGeneration(Lfm2VlPreTrainedModel, GenerationMixin):
|
469 |
+
_tied_weights_keys = ["lm_head.weight"]
|
470 |
+
|
471 |
+
def __init__(self, config: Lfm2VlConfig):
|
472 |
+
super().__init__(config)
|
473 |
+
self.model = Lfm2VlModel(config)
|
474 |
+
self.lm_head = nn.Linear(
|
475 |
+
config.text_config.hidden_size, config.text_config.vocab_size, bias=False
|
476 |
+
)
|
477 |
+
self.post_init()
|
478 |
+
|
479 |
+
def _supports_default_dynamic_cache(self):
|
480 |
+
return False
|
481 |
+
|
482 |
+
def get_input_embeddings(self):
|
483 |
+
return self.model.get_input_embeddings()
|
484 |
+
|
485 |
+
def set_input_embeddings(self, value):
|
486 |
+
self.model.set_input_embeddings(value)
|
487 |
+
|
488 |
+
def get_output_embeddings(self) -> nn.Module:
|
489 |
+
return self.lm_head
|
490 |
+
|
491 |
+
def set_decoder(self, decoder):
|
492 |
+
self.model.set_decoder(decoder)
|
493 |
+
|
494 |
+
def get_decoder(self):
|
495 |
+
return self.model.get_decoder()
|
496 |
+
|
497 |
+
def get_image_features(
|
498 |
+
self,
|
499 |
+
pixel_values: torch.FloatTensor,
|
500 |
+
spatial_shapes: torch.Tensor,
|
501 |
+
pixel_attention_mask: torch.Tensor,
|
502 |
+
**kwargs,
|
503 |
+
):
|
504 |
+
return self.model.get_image_features(
|
505 |
+
pixel_values=pixel_values,
|
506 |
+
spatial_shapes=spatial_shapes,
|
507 |
+
pixel_attention_mask=pixel_attention_mask,
|
508 |
+
**kwargs,
|
509 |
+
)
|
510 |
+
|
511 |
+
@property
|
512 |
+
def language_model(self):
|
513 |
+
return self.model.language_model
|
514 |
+
|
515 |
+
@property
|
516 |
+
def vision_tower(self):
|
517 |
+
return self.model.vision_tower
|
518 |
+
|
519 |
+
@property
|
520 |
+
def multi_modal_projector(self):
|
521 |
+
return self.model.multi_modal_projector
|
522 |
+
|
523 |
+
@can_return_tuple
|
524 |
+
def forward(
|
525 |
+
self,
|
526 |
+
input_ids: torch.LongTensor = None,
|
527 |
+
pixel_values: torch.FloatTensor = None,
|
528 |
+
spatial_shapes: torch.Tensor = None,
|
529 |
+
pixel_attention_mask: torch.Tensor = None,
|
530 |
+
attention_mask: torch.Tensor | None = None,
|
531 |
+
position_ids: torch.LongTensor | None = None,
|
532 |
+
past_key_values: Cache | None = None,
|
533 |
+
inputs_embeds: torch.FloatTensor | None = None,
|
534 |
+
labels: torch.LongTensor | None = None,
|
535 |
+
use_cache: bool | None = None,
|
536 |
+
output_attentions: bool | None = None,
|
537 |
+
output_hidden_states: bool | None = None,
|
538 |
+
return_dict: bool | None = None,
|
539 |
+
cache_position: torch.LongTensor | None = None,
|
540 |
+
logits_to_keep: int | torch.Tensor = 0,
|
541 |
+
image_sizes: torch.Tensor | None = None,
|
542 |
+
**kwargs,
|
543 |
+
) -> tuple | Lfm2VlCausalLMOutputWithPast:
|
544 |
+
r"""
|
545 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, channels, height, width)`, *optional*):
|
546 |
+
The input image tensors.
|
547 |
+
spatial_shapes (`torch.Tensor` of shape `(batch_size, 2)`, *optional*):
|
548 |
+
The spatial shapes of the input images.
|
549 |
+
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, height, width)`, *optional*):
|
550 |
+
The pixel attention mask of the input images.
|
551 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
552 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
553 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
554 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
555 |
+
|
556 |
+
Example:
|
557 |
+
|
558 |
+
```python
|
559 |
+
>>> from PIL import Image
|
560 |
+
>>> import requests
|
561 |
+
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
|
562 |
+
>>> from transformers.image_utils import load_image
|
563 |
+
|
564 |
+
>>> model = AutoModelForImageTextToText.from_pretrained(
|
565 |
+
... "LiquidAI/LFM2-VL-1.6B",
|
566 |
+
... trust_remote_code=True
|
567 |
+
... )
|
568 |
+
>>> processor = AutoProcessor.from_pretrained(
|
569 |
+
... "LiquidAI/LFM2-VL-1.6B",
|
570 |
+
... trust_remote_code=True
|
571 |
+
... )
|
572 |
+
|
573 |
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
574 |
+
>>> image = load_image(url)
|
575 |
+
|
576 |
+
>>> conversation = [
|
577 |
+
... {
|
578 |
+
... "role": "user",
|
579 |
+
... "content": [
|
580 |
+
... {"type": "image", "image": image},
|
581 |
+
... {"type": "text", "text": "What is in this image?"},
|
582 |
+
... ],
|
583 |
+
... },
|
584 |
+
... ]
|
585 |
+
|
586 |
+
>>> inputs = processor.apply_chat_template(
|
587 |
+
... conversation,
|
588 |
+
... add_generation_prompt=True,
|
589 |
+
... tokenize=True,
|
590 |
+
... return_dict=True,
|
591 |
+
... return_tensors="pt"
|
592 |
+
... )
|
593 |
+
|
594 |
+
>>> # Generate
|
595 |
+
>>> outputs = model.generate(**inputs, max_new_tokens=45)
|
596 |
+
>>> processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
597 |
+
'This image depicts a vibrant street scene in what appears to be a Chinatown or similar cultural area. The focal point is a large red stop sign with white lettering, mounted on a pole.'
|
598 |
+
```"""
|
599 |
+
output_attentions = (
|
600 |
+
output_attentions
|
601 |
+
if output_attentions is not None
|
602 |
+
else self.config.output_attentions
|
603 |
+
)
|
604 |
+
output_hidden_states = (
|
605 |
+
output_hidden_states
|
606 |
+
if output_hidden_states is not None
|
607 |
+
else self.config.output_hidden_states
|
608 |
+
)
|
609 |
+
return_dict = (
|
610 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
611 |
+
)
|
612 |
+
|
613 |
+
outputs = self.model(
|
614 |
+
input_ids=input_ids,
|
615 |
+
pixel_values=pixel_values,
|
616 |
+
spatial_shapes=spatial_shapes,
|
617 |
+
pixel_attention_mask=pixel_attention_mask,
|
618 |
+
attention_mask=attention_mask,
|
619 |
+
position_ids=position_ids,
|
620 |
+
past_key_values=past_key_values,
|
621 |
+
inputs_embeds=inputs_embeds,
|
622 |
+
use_cache=use_cache,
|
623 |
+
output_attentions=output_attentions,
|
624 |
+
output_hidden_states=output_hidden_states,
|
625 |
+
return_dict=True,
|
626 |
+
cache_position=cache_position,
|
627 |
+
image_sizes=image_sizes,
|
628 |
+
**kwargs,
|
629 |
+
)
|
630 |
+
|
631 |
+
hidden_states = outputs[0]
|
632 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
633 |
+
slice_indices = (
|
634 |
+
slice(-logits_to_keep, None)
|
635 |
+
if isinstance(logits_to_keep, int)
|
636 |
+
else logits_to_keep
|
637 |
+
)
|
638 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
639 |
+
|
640 |
+
loss = None
|
641 |
+
if labels is not None:
|
642 |
+
loss = self.loss_function(
|
643 |
+
logits=logits,
|
644 |
+
labels=labels,
|
645 |
+
vocab_size=self.config.text_config.vocab_size,
|
646 |
+
**kwargs,
|
647 |
+
)
|
648 |
+
|
649 |
+
return Lfm2VlCausalLMOutputWithPast(
|
650 |
+
loss=loss,
|
651 |
+
logits=logits,
|
652 |
+
past_key_values=outputs.past_key_values,
|
653 |
+
hidden_states=outputs.hidden_states,
|
654 |
+
attentions=outputs.attentions,
|
655 |
+
image_hidden_states=outputs.image_hidden_states,
|
656 |
+
)
|
657 |
+
|
658 |
+
def prepare_inputs_for_generation(
|
659 |
+
self,
|
660 |
+
input_ids,
|
661 |
+
past_key_values=None,
|
662 |
+
inputs_embeds=None,
|
663 |
+
pixel_values=None,
|
664 |
+
attention_mask=None,
|
665 |
+
cache_position=None,
|
666 |
+
logits_to_keep=None,
|
667 |
+
**kwargs,
|
668 |
+
):
|
669 |
+
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
|
670 |
+
model_inputs = super().prepare_inputs_for_generation(
|
671 |
+
input_ids,
|
672 |
+
past_key_values=past_key_values,
|
673 |
+
inputs_embeds=inputs_embeds,
|
674 |
+
attention_mask=attention_mask,
|
675 |
+
cache_position=cache_position,
|
676 |
+
logits_to_keep=logits_to_keep,
|
677 |
+
**kwargs,
|
678 |
+
)
|
679 |
+
|
680 |
+
if cache_position[0] == 0:
|
681 |
+
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
|
682 |
+
# Otherwise we need pixel values to be passed to model
|
683 |
+
model_inputs["pixel_values"] = pixel_values
|
684 |
+
|
685 |
+
return model_inputs
|
686 |
+
|
687 |
+
|
688 |
+
__all__ = ["Lfm2VlForConditionalGeneration", "Lfm2VlModel", "Lfm2VlPreTrainedModel"]
|