--- language: - en pipeline_tag: text-classification license: mit tags: - storyboard - beats - style-suggestion - nlp - sklearn - educational model-index: - name: StoryboardBeats-Mini-0.1 results: [] --- # StoryboardBeats-Mini v0.1 **What it does** Given a short story prompt, this model predicts: - **Narrative beats** (multi-label): `opening`, `rising_action`, `key_moment`, `twist`, `resolution` - **Suggested visual style**: `Realistic`, `Anime`, `Comic`, `Watercolor`, or `Sketch` **Why it's unique** A tiny, proprietary prototype that links **text prompts** to **story structure** and **visual style** — designed for pre-visualization workflows. Lightweight and CPU-friendly (scikit‑learn). ## Files - `model.joblib` — scikit-learn pipelines (TF‑IDF + Logistic Regression) for beats (multi-label) and style. - `inference.py` — minimal interface with `load_model()` and `predict()`. - `requirements.txt` — dependencies to run `inference.py`. ## Quick use (local) ```bash pip install -r requirements.txt python -c "import inference; print(inference.predict(['A robot in a neon city discovers a secret, but time runs out.']))" ``` ## Metrics (synthetic split) - beats (subset accuracy): **0.717** - style (accuracy): **1.000** > ⚠️ Trained on synthetic data; not suitable for production. Educational / research use only.