manbeast3b
commited on
Commit
·
5554e0d
0
Parent(s):
Initial commit
Browse files- .gitattributes +36 -0
- README.md +19 -0
- decoder.pth +3 -0
- encoder.pth +3 -0
- pyproject.toml +34 -0
- src/main.py +50 -0
- src/pipeline.py +57 -0
- uv.lock +0 -0
.gitattributes
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
backup.png filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# flux-schnell-edge-inference
|
| 2 |
+
|
| 3 |
+
This holds the baseline for the FLUX Schnel NVIDIA GeForce RTX 4090 contest, which can be forked freely and optimized
|
| 4 |
+
|
| 5 |
+
Some recommendations are as follows:
|
| 6 |
+
- Installing dependencies should be done in `pyproject.toml`, including git dependencies
|
| 7 |
+
- HuggingFace models should be specified in the `models` array in the `pyproject.toml` file, and will be downloaded before benchmarking
|
| 8 |
+
- The pipeline does **not** have internet access so all dependencies and models must be included in the `pyproject.toml`
|
| 9 |
+
- Compiled models should be hosted on HuggingFace and included in the `models` array in the `pyproject.toml` (rather than compiling during loading). Loading time matters far more than file sizes
|
| 10 |
+
- Avoid changing `src/main.py`, as that includes mostly protocol logic. Most changes should be in `models` and `src/pipeline.py`
|
| 11 |
+
- Ensure the entire repository (excluding dependencies and HuggingFace models) is under 16MB
|
| 12 |
+
|
| 13 |
+
For testing, you need a docker container with pytorch and ubuntu 22.04.
|
| 14 |
+
You can download your listed dependencies with `uv`, installed with:
|
| 15 |
+
```bash
|
| 16 |
+
pipx ensurepath
|
| 17 |
+
pipx install uv
|
| 18 |
+
```
|
| 19 |
+
You can then relock with `uv lock`, and then run with `uv run start_inference`
|
decoder.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f7e85a093942d8d5fb785867065bd9dd1a38eb51e46af7bd5e24e0ef530b5bd9
|
| 3 |
+
size 2494680
|
encoder.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ad2516494613cedb1af1bff489f597b030c072bd8cc47fed8f2fe4e8575948bd
|
| 3 |
+
size 2494552
|
pyproject.toml
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[build-system]
|
| 2 |
+
requires = ["setuptools >= 75.0"]
|
| 3 |
+
build-backend = "setuptools.build_meta"
|
| 4 |
+
|
| 5 |
+
[project]
|
| 6 |
+
name = "flux-schnell-edge-inference"
|
| 7 |
+
description = "An edge-maxxing model submission for the 4090 Flux contest"
|
| 8 |
+
requires-python = ">=3.10,<3.13"
|
| 9 |
+
version = "8"
|
| 10 |
+
dependencies = [
|
| 11 |
+
"diffusers==0.31.0",
|
| 12 |
+
"transformers==4.46.2",
|
| 13 |
+
"accelerate==1.1.0",
|
| 14 |
+
"omegaconf==2.3.0",
|
| 15 |
+
"torch==2.5.1",
|
| 16 |
+
"protobuf==5.28.3",
|
| 17 |
+
"sentencepiece==0.2.0",
|
| 18 |
+
"torchao==0.6.1",
|
| 19 |
+
"hf_transfer==0.1.8",
|
| 20 |
+
"edge-maxxing-pipelines @ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines",
|
| 21 |
+
"para_attn"
|
| 22 |
+
]
|
| 23 |
+
|
| 24 |
+
[[tool.edge-maxxing.models]]
|
| 25 |
+
repository = "manbeast3b/Flux.1.schnell-quant2"
|
| 26 |
+
revision = "44eb293715147878512da10bf3bc47cd14ec8c55"
|
| 27 |
+
|
| 28 |
+
[[tool.edge-maxxing.models]]
|
| 29 |
+
repository = "madebyollin/taef1"
|
| 30 |
+
revision = "2d552378e58c9c94201075708d7de4e1163b2689"
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
[project.scripts]
|
| 34 |
+
start_inference = "main:main"
|
src/main.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from io import BytesIO
|
| 2 |
+
from multiprocessing.connection import Listener
|
| 3 |
+
from os import chmod, remove
|
| 4 |
+
from os.path import abspath, exists
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
|
| 7 |
+
from PIL.JpegImagePlugin import JpegImageFile
|
| 8 |
+
from pipelines.models import TextToImageRequest
|
| 9 |
+
import torch
|
| 10 |
+
from pipeline import load_pipeline, infer
|
| 11 |
+
|
| 12 |
+
SOCKET = abspath(Path(__file__).parent.parent / "inferences.sock")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def main():
|
| 16 |
+
print(f"Loading pipeline")
|
| 17 |
+
pipeline = load_pipeline()
|
| 18 |
+
generator = torch.Generator(pipeline.device)
|
| 19 |
+
print(f"Pipeline loaded, creating socket at '{SOCKET}'")
|
| 20 |
+
|
| 21 |
+
if exists(SOCKET):
|
| 22 |
+
remove(SOCKET)
|
| 23 |
+
|
| 24 |
+
with Listener(SOCKET) as listener:
|
| 25 |
+
chmod(SOCKET, 0o777)
|
| 26 |
+
|
| 27 |
+
print(f"Awaiting connections")
|
| 28 |
+
with listener.accept() as connection:
|
| 29 |
+
print(f"Connected")
|
| 30 |
+
|
| 31 |
+
while True:
|
| 32 |
+
try:
|
| 33 |
+
request = TextToImageRequest.model_validate_json(connection.recv_bytes().decode("utf-8"))
|
| 34 |
+
except EOFError:
|
| 35 |
+
print(f"Inference socket exiting")
|
| 36 |
+
|
| 37 |
+
return
|
| 38 |
+
|
| 39 |
+
image = infer(request, pipeline, generator.manual_seed(request.seed))
|
| 40 |
+
|
| 41 |
+
data = BytesIO()
|
| 42 |
+
image.save(data, format=JpegImageFile.format)
|
| 43 |
+
|
| 44 |
+
packet = data.getvalue()
|
| 45 |
+
|
| 46 |
+
connection.send_bytes(packet)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
if __name__ == '__main__':
|
| 50 |
+
main()
|
src/pipeline.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL.Image import Image
|
| 2 |
+
from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, AutoencoderTiny
|
| 3 |
+
from huggingface_hub.constants import HF_HUB_CACHE
|
| 4 |
+
from pipelines.models import TextToImageRequest
|
| 5 |
+
from torch import Generator
|
| 6 |
+
from torchao.quantization import quantize_, int8_weight_only, float8_weight_only
|
| 7 |
+
from transformers import T5EncoderModel, CLIPTextModel, logging
|
| 8 |
+
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe as caching
|
| 9 |
+
import gc
|
| 10 |
+
import os
|
| 11 |
+
from typing import TypeAlias
|
| 12 |
+
import torch
|
| 13 |
+
|
| 14 |
+
Pipeline = False
|
| 15 |
+
|
| 16 |
+
torch._inductor.config.epilogue_fusion = False
|
| 17 |
+
torch._dynamo.config.suppress_errors = True
|
| 18 |
+
|
| 19 |
+
torch._inductor.config.coordinate_descent_tuning = True
|
| 20 |
+
torch._inductor.config.coordinate_descent_check_all_directions = True
|
| 21 |
+
torch._inductor.config.conv_1x1_as_mm = True
|
| 22 |
+
|
| 23 |
+
torch.backends.cudnn.benchmark = True
|
| 24 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
|
| 25 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "True"
|
| 26 |
+
|
| 27 |
+
BASE_CHECKPOINT = "manbeast3b/Flux.1.schnell-quant2"
|
| 28 |
+
BASE_REVISION = "44eb293715147878512da10bf3bc47cd14ec8c55"
|
| 29 |
+
|
| 30 |
+
def load_pipeline() -> Pipeline:
|
| 31 |
+
|
| 32 |
+
path = os.path.join(HF_HUB_CACHE, "models--manbeast3b--Flux.1.schnell-quant2/snapshots/44eb293715147878512da10bf3bc47cd14ec8c55/transformer")
|
| 33 |
+
mod_transformer = FluxTransformer2DModel.from_pretrained(path, use_safetensors=False,local_files_only=True,torch_dtype=torch.bfloat16)
|
| 34 |
+
|
| 35 |
+
vae = AutoencoderTiny.from_pretrained(
|
| 36 |
+
"madebyollin/taef1",
|
| 37 |
+
revision="2d552378e58c9c94201075708d7de4e1163b2689",
|
| 38 |
+
local_files_only=True,
|
| 39 |
+
torch_dtype=torch.bfloat16)
|
| 40 |
+
vae.encoder.load_state_dict(torch.load("encoder.pth"), strict=False); vae.decoder.load_state_dict(torch.load("decoder.pth"), strict=False)
|
| 41 |
+
|
| 42 |
+
pipeline = FluxPipeline.from_pretrained(BASE_CHECKPOINT,revision=BASE_REVISION,transformer=mod_transformer,vae=vae,local_files_only=True,torch_dtype=torch.bfloat16).to("cuda")
|
| 43 |
+
pipeline.to(memory_format=torch.channels_last)
|
| 44 |
+
# quantize_(pipeline.vae, float8_weight_only())
|
| 45 |
+
|
| 46 |
+
quantize_(pipeline.vae, int8_weight_only())
|
| 47 |
+
pipeline = caching(pipeline,residual_diff_threshold=0.86)
|
| 48 |
+
|
| 49 |
+
with torch.inference_mode():
|
| 50 |
+
for _ in range(2):
|
| 51 |
+
pipeline("Eagles, Chiefs, Kendrick Lamar, Halftime Show, DunKings, Clydesdales, Tush Push, Moneyline, Taylor Swift, Serena Williams", num_inference_steps=4, guidance_scale=0.0,)
|
| 52 |
+
|
| 53 |
+
return pipeline
|
| 54 |
+
|
| 55 |
+
@torch.inference_mode()
|
| 56 |
+
def infer(request: TextToImageRequest, pipeline: Pipeline, generator: torch.Generator) -> Image:
|
| 57 |
+
return pipeline(request.prompt,generator=generator,guidance_scale=0.0,num_inference_steps=4,max_sequence_length=256,height=request.height,width=request.width,).images[0]
|
uv.lock
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|