|
|
|
|
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
|
|
|
|
model_name = "models/Llama-3.2-1B-Instruct" |
|
tok = None |
|
lm = None |
|
|
|
|
|
|
|
def chat_current(system_prompt: str, user_prompt: str) -> str: |
|
""" |
|
Current implementation (same as server.py) - will show warnings |
|
""" |
|
print("🔴 Running CURRENT implementation (with warnings)...") |
|
|
|
messages = [ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": user_prompt}, |
|
] |
|
|
|
input_ids = tok.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
).to(lm.device) |
|
|
|
with torch.inference_mode(): |
|
output_ids = lm.generate( |
|
input_ids, |
|
max_new_tokens=2048, |
|
do_sample=True, |
|
temperature=0.2, |
|
repetition_penalty=1.1, |
|
top_k=100, |
|
top_p=0.95, |
|
) |
|
|
|
answer = tok.decode( |
|
output_ids[0][input_ids.shape[-1]:], |
|
skip_special_tokens=True, |
|
clean_up_tokenization_spaces=True, |
|
) |
|
return answer.strip() |
|
|
|
com_add = "5F71XTGBnBGzxiPxCK4EbWMnhckH21tGWSRfe6NrMdxMe6kg" |
|
|
|
|
|
def chat_fixed(system_prompt: str, user_prompt: str) -> str: |
|
""" |
|
Fixed implementation - proper attention mask and pad token |
|
""" |
|
print("🟢 Running FIXED implementation (no warnings)...") |
|
|
|
messages = [ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": user_prompt}, |
|
] |
|
|
|
|
|
inputs = tok.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
return_tensors="pt", |
|
return_dict=True |
|
) |
|
|
|
|
|
input_ids = inputs["input_ids"].to(lm.device) |
|
attention_mask = inputs["attention_mask"].to(lm.device) |
|
|
|
with torch.inference_mode(): |
|
output_ids = lm.generate( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
pad_token_id=tok.eos_token_id, |
|
max_new_tokens=2048, |
|
do_sample=True, |
|
temperature=0.2, |
|
repetition_penalty=1.1, |
|
top_k=100, |
|
top_p=0.95, |
|
) |
|
|
|
answer = tok.decode( |
|
output_ids[0][input_ids.shape[-1]:], |
|
skip_special_tokens=True, |
|
clean_up_tokenization_spaces=True, |
|
) |
|
return answer.strip() |
|
|
|
|
|
|
|
|
|
def compare_generations(): |
|
"""Compare both implementations""" |
|
system_prompt = "You are a helpful assistant who tries to help answer the user's question." |
|
user_prompt = "Create a report on anxiety in work. How do I manage time and stress effectively?" |
|
|
|
print("=" * 60) |
|
print("COMPARING GENERATION METHODS") |
|
print("=" * 60) |
|
print(f"System: {system_prompt}") |
|
print(f"User: {user_prompt}") |
|
print("=" * 60) |
|
|
|
|
|
print("\n" + "=" * 60) |
|
current_output = chat_current(system_prompt, user_prompt) |
|
print(f"CURRENT OUTPUT:\n{current_output}") |
|
|
|
print("\n" + "=" * 60) |
|
|
|
fixed_output = chat_fixed(system_prompt, user_prompt) |
|
print(f"FIXED OUTPUT:\n{fixed_output}") |
|
|
|
print("\n" + "=" * 60) |
|
print("COMPARISON:") |
|
print(f"Outputs are identical: {current_output == fixed_output}") |
|
print(f"Current length: {len(current_output)} chars") |
|
print(f"Fixed length: {len(fixed_output)} chars") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def filter_by_word_count(data, max_words=3): |
|
"""Return only phrases with word count <= max_words.""" |
|
return {k: v for k, v in data.items() if len(v.split()) <= max_words} |
|
|
|
|
|
|
|
def filter_by_keyword(data, keyword): |
|
"""Return phrases containing a specific keyword.""" |
|
return {k: v for k, v in data.items() if keyword.lower() in v.lower()} |
|
|
|
|
|
|
|
|
|
example_prompt = "As an answer of 5 points with scale from 5 to 10. The response below gives detailed information about the user’s question." |
|
|