LinyingLyu commited on
Commit
4a9d6f4
·
verified ·
1 Parent(s): 4eea122

Upload ChronoGPT_instruct.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. ChronoGPT_instruct.py +295 -0
ChronoGPT_instruct.py ADDED
@@ -0,0 +1,295 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import math
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from typing import Optional, List, Tuple
8
+ from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
9
+
10
+ def norm(x):
11
+ return F.rms_norm(x, (x.size(-1),))
12
+
13
+ def extract_response(input_text, model, tokenizer, device, max_tokens=128, temperature=0.0):
14
+ system_prompt = """You are ChronoGPT, a large language model trained by ManelaLab at WashU.
15
+ Below is an instruction that describes a task.
16
+ Write a response that appropriately completes the request."""
17
+
18
+ formatted_input = f"\n\n### Instruction:\n{system_prompt}\n{input_text}\n\n### Input:\n### Response:\n"
19
+
20
+ token_ids = generate(
21
+ model=model,
22
+ idx=text_to_token_ids(formatted_input, tokenizer).to(device),
23
+ max_new_tokens=max_tokens,
24
+ context_size=1792,
25
+ temperature=temperature,
26
+ eos_id=50256
27
+ )
28
+
29
+ text = token_ids_to_text(token_ids, tokenizer)
30
+ return text[len(formatted_input):].replace("### Response:", "").strip()
31
+
32
+ def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None):
33
+ for _ in range(max_new_tokens):
34
+ idx_cond = idx[:, -context_size:]
35
+ with torch.no_grad():
36
+ logits = model(idx_cond)
37
+ logits = logits[:, -1, :]
38
+ if top_k is not None:
39
+ top_logits, _ = torch.topk(logits, top_k)
40
+ min_val = top_logits[:, -1]
41
+ logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)
42
+ if temperature > 0.0:
43
+ logits = logits / temperature
44
+ probs = torch.softmax(logits, dim=-1)
45
+ idx_next = torch.multinomial(probs, num_samples=1)
46
+ else:
47
+ idx_next = torch.argmax(logits, dim=-1, keepdim=True)
48
+ if idx_next == eos_id:
49
+ break
50
+ idx = torch.cat((idx, idx_next), dim=1)
51
+ return idx
52
+
53
+ def text_to_token_ids(text, tokenizer):
54
+ encoded = tokenizer.encode(text, allowed_special={"<|endoftext|>"})
55
+ encoded_tensor = torch.tensor(encoded).unsqueeze(0)
56
+ return encoded_tensor
57
+
58
+ def token_ids_to_text(token_ids, tokenizer):
59
+ flat = token_ids.squeeze(0)
60
+ return tokenizer.decode(flat.tolist())
61
+
62
+ class CastedLinear(nn.Linear):
63
+ def __init__(self, in_features, out_features):
64
+ super().__init__(in_features, out_features, bias=False)
65
+
66
+ def forward(self, x):
67
+ return F.linear(x, self.weight.type_as(x))
68
+
69
+ class Rotary(nn.Module):
70
+ def __init__(self, dim, max_seq_len=65536):
71
+ super().__init__()
72
+ self.dim = dim
73
+ self.max_seq_len = max_seq_len
74
+
75
+ # Only create buffers if not on meta device
76
+ if not torch.tensor(0).is_meta:
77
+ self._create_buffers()
78
+ else:
79
+ # Register dummy meta tensors that will be replaced
80
+ self.register_buffer('cos', torch.empty(max_seq_len, dim, dtype=torch.float32), persistent=False)
81
+ self.register_buffer('sin', torch.empty(max_seq_len, dim, dtype=torch.float32), persistent=False)
82
+
83
+ def _create_buffers(self, device=None):
84
+ angular_freq = (1 / 1024) ** torch.linspace(0, 1, steps=self.dim//4, dtype=torch.float32)
85
+ angular_freq = torch.cat([angular_freq, angular_freq.new_zeros(self.dim//4)])
86
+ t = torch.arange(self.max_seq_len, dtype=torch.float32)
87
+
88
+ if device is not None:
89
+ angular_freq = angular_freq.to(device)
90
+ t = t.to(device)
91
+
92
+ theta = torch.einsum('i,j -> ij', t, angular_freq)
93
+ self.register_buffer('cos', theta.cos(), persistent=False)
94
+ self.register_buffer('sin', theta.sin(), persistent=False)
95
+
96
+ def forward(self, x):
97
+ # Create buffers on first forward pass if needed
98
+ if self.cos.is_meta:
99
+ self._create_buffers(device=x.device)
100
+
101
+ cos, sin = self.cos[None, :x.size(-3), None, :], self.sin[None, :x.size(-3), None, :]
102
+ x1, x2 = x.float().chunk(2, dim=-1)
103
+ y1 = x1 * cos + x2 * sin
104
+ y2 = x1 * (-sin) + x2 * cos
105
+ return torch.cat((y1, y2), 3).type_as(x)
106
+
107
+ class CausalSelfAttention(nn.Module):
108
+ def __init__(self, dim, num_heads):
109
+ super().__init__()
110
+ assert dim % num_heads == 0
111
+ self.num_heads = num_heads
112
+ self.head_dim = dim // num_heads
113
+ self.c_q = CastedLinear(dim, dim)
114
+ self.c_k = CastedLinear(dim, dim)
115
+ self.c_v = CastedLinear(dim, dim)
116
+ self.lambdas = nn.Parameter(torch.tensor([0.5, 0.5]))
117
+ self.rotary = Rotary(self.head_dim)
118
+ self.c_proj = CastedLinear(dim, dim)
119
+ self.register_buffer('kv_cache', None, persistent=False)
120
+
121
+ def forward(self, x, ve):
122
+ B, T = x.size(0), x.size(1)
123
+
124
+ # Generate Q, K, V
125
+ q = self.c_q(x).view(B, T, self.num_heads, self.head_dim)
126
+ k = self.c_k(x).view(B, T, self.num_heads, self.head_dim)
127
+ v = self.c_v(x).view(B, T, self.num_heads, self.head_dim)
128
+
129
+ if ve is not None:
130
+ v = self.lambdas[0] * v + self.lambdas[1] * ve.view_as(v)
131
+ else:
132
+ v = self.lambdas[0] * v
133
+
134
+ q, k = norm(q), norm(k)
135
+ q, k = self.rotary(q), self.rotary(k)
136
+
137
+ # Use KV cache if available
138
+ if self.kv_cache is not None:
139
+ k = torch.cat([self.kv_cache[0], k], dim=1)
140
+ v = torch.cat([self.kv_cache[1], v], dim=1)
141
+ self.kv_cache = torch.stack([k, v])
142
+
143
+ # Efficient attention with flash attention if available
144
+ if hasattr(F, 'scaled_dot_product_attention'):
145
+ y = F.scaled_dot_product_attention(
146
+ q.transpose(1, 2), # (B, num_heads, T, head_dim)
147
+ k.transpose(1, 2), # (B, num_heads, T, head_dim)
148
+ v.transpose(1, 2), # (B, num_heads, T, head_dim)
149
+ is_causal=True
150
+ )
151
+ else:
152
+ # Fallback to regular attention
153
+ att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(self.head_dim))
154
+ att = att.masked_fill(
155
+ torch.triu(torch.ones(T, T, device=x.device), diagonal=1).bool(),
156
+ float('-inf')
157
+ )
158
+ att = F.softmax(att, dim=-1)
159
+ y = att @ v
160
+
161
+ y = y.transpose(1, 2).contiguous().view(B, T, -1)
162
+ y = self.c_proj(y)
163
+ return y
164
+
165
+ class MLP(nn.Module):
166
+ def __init__(self, dim):
167
+ super().__init__()
168
+ self.c_fc = CastedLinear(dim, 4 * dim)
169
+ self.c_proj = CastedLinear(4 * dim, dim)
170
+ self.c_proj.weight.data.zero_()
171
+
172
+ def forward(self, x):
173
+ x = self.c_fc(x)
174
+ x = F.relu(x).square()
175
+ x = self.c_proj(x)
176
+ return x
177
+
178
+ class Block(nn.Module):
179
+ def __init__(self, model_dim, num_heads, use_attn=True):
180
+ super().__init__()
181
+ self.attn = CausalSelfAttention(model_dim, num_heads) if use_attn else None
182
+ self.mlp = MLP(model_dim)
183
+ self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
184
+
185
+ def forward(self, x, ve, x0):
186
+ x = self.lambdas[0] * x + self.lambdas[1] * x0
187
+ if self.attn is not None:
188
+ x = x + self.attn(norm(x), ve)
189
+ x = x + self.mlp(norm(x))
190
+ return x
191
+
192
+ class ValueEmbedding(nn.Module):
193
+ def __init__(self, vocab_size, model_dim, num_layers=52):
194
+ super().__init__()
195
+ self.num_layers = num_layers
196
+ # We only have 3 distinct embedding modules, reused at beginning and end.
197
+ self.embed = nn.ModuleList([nn.Embedding(vocab_size, model_dim) for _ in range(3)])
198
+
199
+ def forward(self, inputs):
200
+ # Compute the base embeddings (a list of length 3)
201
+ base = [emb(inputs).bfloat16() for emb in self.embed]
202
+ L = self.num_layers
203
+ half = L // 2 # number of encoder layers (assumes num_layers is even)
204
+ # Build encoder: first 3 layers get embeddings, rest get None.
205
+ encoder = [base[i] if i < 3 else None for i in range(half)]
206
+ # Build decoder: last 3 layers get embeddings, others get None.
207
+ # For decoder layers, if i is in [half-3, half-1] then assign base[0], base[1], base[2]
208
+ decoder = [base[i - (half - 3)] if i >= (half - 3) else None for i in range(half)]
209
+ return encoder + decoder
210
+
211
+
212
+ class ChronoGPT(nn.Module, PyTorchModelHubMixin):
213
+ def __init__(self, vocab_size, num_layers, num_heads, model_dim, device=None):
214
+ super().__init__()
215
+ self.num_heads = num_heads
216
+ self.vocab_size = vocab_size # Store vocab_size as instance variable
217
+ self.embed = nn.Embedding(vocab_size, model_dim)
218
+ self.blocks = nn.ModuleList([Block(model_dim, num_heads, use_attn=True) for i in range(num_layers)])
219
+ self.value_embeds = ValueEmbedding(vocab_size, model_dim, num_layers=num_layers)
220
+ self.lm_head = CastedLinear(model_dim, vocab_size)
221
+ self.lm_head.weight.data.zero_()
222
+ self.num_encoder_layers = num_layers // 2
223
+ self.num_decoder_layers = num_layers - self.num_encoder_layers
224
+ self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
225
+ @torch.inference_mode()
226
+ def forward(self, inputs, past_key_values=None):
227
+ # Remove fixed batch size assumption
228
+ B = inputs.size(0) # Get batch size from input tensor
229
+ if inputs.dim() == 1:
230
+ inputs = inputs.unsqueeze(0) # Add batch dimension if not present
231
+
232
+ x0 = norm(self.embed(inputs).bfloat16())
233
+ x = x0
234
+
235
+ # Modify value embedding handling for batched input
236
+ ve = [self.value_embeds(inputs[i].view(-1)) for i in range(B)]
237
+ ve = [torch.stack([ve[b][i] for b in range(B)]) if ve[0][i] is not None else None
238
+ for i in range(len(ve[0]))]
239
+ ve_enc, ve_dec = ve[:self.num_encoder_layers], ve[self.num_encoder_layers:]
240
+
241
+ # Handle cached states for batched input
242
+ if past_key_values is not None:
243
+ for i, block in enumerate(self.blocks):
244
+ if block.attn is not None:
245
+ block.attn.kv_cache = past_key_values[i]
246
+
247
+ present = []
248
+ layer_outputs = []
249
+ skip_connections = []
250
+
251
+ # Process through encoder layers
252
+ for i in range(self.num_encoder_layers):
253
+ block = self.blocks[i]
254
+ x = block(x, ve_enc[i], x0)
255
+ if block.attn is not None:
256
+ present.append(block.attn.kv_cache)
257
+ block.attn.kv_cache = None
258
+ skip_connections.append(x)
259
+ layer_outputs.append(norm(x))
260
+
261
+ # Process through decoder layers
262
+ for i in range(self.num_decoder_layers):
263
+ x = x + self.skip_weights[i] * skip_connections.pop()
264
+ block = self.blocks[self.num_encoder_layers + i]
265
+ x = block(x, ve_dec[i], x0)
266
+ layer_outputs.append(norm(x))
267
+ if block.attn is not None:
268
+ present.append(block.attn.kv_cache)
269
+ block.attn.kv_cache = None
270
+
271
+ x = norm(x)
272
+ logits = self.lm_head(x)
273
+ logits = 15 * torch.tanh(logits / 15)
274
+
275
+ return logits.float()#, layer_outputs
276
+ def save_pretrained(self, save_directory, **kwargs):
277
+ os.makedirs(save_directory, exist_ok=True)
278
+ torch.save(self.state_dict(), os.path.join(save_directory, "pytorch_model.bin"))
279
+ config = {
280
+ "vocab_size": self.embed.num_embeddings,
281
+ "num_layers": len(self.blocks),
282
+ "num_heads": self.num_heads,
283
+ "model_dim": self.embed.embedding_dim
284
+ }
285
+ torch.save(config, os.path.join(save_directory, "config.pt"))
286
+ with open(os.path.join(save_directory, "config.json"), "w") as f:
287
+ json.dump(config, f)
288
+ @classmethod
289
+ def from_pretrained(cls, repo_id, cache_dir=None, **kwargs):
290
+ config_path = hf_hub_download(repo_id=repo_id, filename="config.pt", cache_dir=cache_dir)
291
+ bin_path = hf_hub_download(repo_id=repo_id, filename="pytorch_model.bin", cache_dir=cache_dir)
292
+ config = torch.load(config_path)
293
+ model = cls(**config)
294
+ model.load_state_dict(torch.load(bin_path))
295
+ return model