Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -12,73 +12,135 @@ inference: false
|
|
| 12 |
---
|
| 13 |
# ChronoGPT
|
| 14 |
|
| 15 |
-
##
|
| 16 |
|
| 17 |
ChronoGPT is a series **high-performance chronologically consistent large language models (LLMs)** designed to eliminate lookahead bias and training leakage while maintaining good language understanding in time-sensitive applications. The model is pretrained on **diverse, high-quality, open-source, and timestamped text** to maintain chronological consistency.
|
| 18 |
|
| 19 |
-
All models in the series achieve **HellaSwag benchmark scores that surpass those of the GPT-2 124M model
|
| 20 |
|
| 21 |
- **Developed by:** Songrun He, Linying Lv, Asaf Manela, Jimmy Wu
|
| 22 |
- **Model type:** Transformer-based autoregressive decoder (Modified modded-NanoGPT architecture)
|
| 23 |
- **Language(s) (NLP):** English
|
| 24 |
- **License:** MIT License
|
| 25 |
|
| 26 |
-
## Model
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
##
|
| 31 |
|
| 32 |
-
|
| 33 |
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
pip install -r requirements.txt
|
| 36 |
```
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
| 39 |
|
| 40 |
```python
|
| 41 |
-
from modeling_chronogpt import ChronoGPT
|
| 42 |
-
import tiktoken
|
| 43 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
|
|
|
| 47 |
|
| 48 |
tokenizer = tiktoken.get_encoding("gpt2")
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
```
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
### Training Data
|
| 60 |
|
| 61 |
-
|
| 62 |
-
- **Incremental updates:** Yearly updates from 2000 to 2024 with an additional 65 billion tokens of timestamped text.
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
|
| 71 |
-
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
|
| 74 |
-
- **Financial forecasting:** Evaluated using **return prediction task** based on Dow Jones Newswire data.
|
| 75 |
-
- **Comparison models:** ChronoGPT was benchmarked against **BERT, FinBERT, StoriesLM-v1-1963, and Llama 3.1**.
|
| 76 |
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
## Citation
|
| 84 |
|
|
@@ -91,10 +153,9 @@ logits, emb = model(inputs)
|
|
| 91 |
}
|
| 92 |
```
|
| 93 |
|
| 94 |
-
|
| 95 |
|
| 96 |
- Songrun He (Washington University in St. Louis, [email protected])
|
| 97 |
- Linying Lv (Washington University in St. Louis, [email protected])
|
| 98 |
- Asaf Manela (Washington University in St. Louis, [email protected])
|
| 99 |
-
- Jimmy Wu (Washington University in St. Louis, [email protected])
|
| 100 |
-
|
|
|
|
| 12 |
---
|
| 13 |
# ChronoGPT
|
| 14 |
|
| 15 |
+
## ChronoGPT Highlights
|
| 16 |
|
| 17 |
ChronoGPT is a series **high-performance chronologically consistent large language models (LLMs)** designed to eliminate lookahead bias and training leakage while maintaining good language understanding in time-sensitive applications. The model is pretrained on **diverse, high-quality, open-source, and timestamped text** to maintain chronological consistency.
|
| 18 |
|
| 19 |
+
All models in the series achieve **HellaSwag benchmark scores that surpass those of the GPT-2 124M model.** This approach preserves the integrity of historical analysis and enables more reliable economic and financial modeling.
|
| 20 |
|
| 21 |
- **Developed by:** Songrun He, Linying Lv, Asaf Manela, Jimmy Wu
|
| 22 |
- **Model type:** Transformer-based autoregressive decoder (Modified modded-NanoGPT architecture)
|
| 23 |
- **Language(s) (NLP):** English
|
| 24 |
- **License:** MIT License
|
| 25 |
|
| 26 |
+
## Model Overview
|
| 27 |
|
| 28 |
+
**ChronoGPT** has the following features:
|
| 29 |
+
- Type: Causal Language Models
|
| 30 |
+
- Training Stage: Pretraining
|
| 31 |
+
- Number of Parameters: ~124 Million
|
| 32 |
+
- Encoder & Decoder Partitioning: 6 encoder and 6 decoder layers
|
| 33 |
+
- Tokenizer: GPT2Tokenizer from HuggingFace
|
| 34 |
+
- Context Length: 1,792
|
| 35 |
+
- Embedding Dimension: 768
|
| 36 |
|
| 37 |
+
## 🚀 Quickstart
|
| 38 |
|
| 39 |
+
You can try ChronoGPT directly in your browser via Google Colab:
|
| 40 |
|
| 41 |
+
<p align="left">
|
| 42 |
+
<a href="https://colab.research.google.com/github/LinyingLyu/ChronoGPT/blob/main/ChronoGPT_tutorial.ipynb" target="_blank">
|
| 43 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open in Colab"/>
|
| 44 |
+
</a>
|
| 45 |
+
</p>
|
| 46 |
+
|
| 47 |
+
Or run it locally with:
|
| 48 |
+
|
| 49 |
+
```bash
|
| 50 |
pip install -r requirements.txt
|
| 51 |
```
|
| 52 |
|
| 53 |
+
### Text Generation
|
| 54 |
+
|
| 55 |
+
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
|
| 56 |
|
| 57 |
```python
|
|
|
|
|
|
|
| 58 |
import torch
|
| 59 |
+
import torch.nn.functional as F
|
| 60 |
+
import tiktoken
|
| 61 |
+
from huggingface_hub import HfApi, login
|
| 62 |
+
from ChronoGPT_inference import *
|
| 63 |
|
| 64 |
+
# ----------------------------- Setup -----------------------------
|
| 65 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 66 |
+
cache_dir = 'cache' # Update this path as needed
|
| 67 |
|
| 68 |
tokenizer = tiktoken.get_encoding("gpt2")
|
| 69 |
+
max_length = 50
|
| 70 |
+
num_return_sequences = 5
|
| 71 |
+
seed = 123
|
| 72 |
+
|
| 73 |
+
# -------------------------- Load Model --------------------------
|
| 74 |
+
model = ChronoGPT.from_pretrained(
|
| 75 |
+
"manelalab/chrono-gpt-v1-20241231",
|
| 76 |
+
trust_remote_code=True,
|
| 77 |
+
cache_dir=cache_dir
|
| 78 |
+
).to(device)
|
| 79 |
+
|
| 80 |
+
# ------------------------ Prepare Input -------------------------
|
| 81 |
+
prompt = "Hello, I am a language model,"
|
| 82 |
+
tokens = tokenizer.encode(prompt)
|
| 83 |
+
tokens = torch.tensor(tokens, dtype=torch.long).unsqueeze(0)
|
| 84 |
+
tokens = tokens.repeat(num_return_sequences, 1).to(device)
|
| 85 |
+
|
| 86 |
+
# -------------------- Sampling Initialization -------------------
|
| 87 |
+
xgen = tokens.clone()
|
| 88 |
+
sample_rng = torch.Generator(device=device)
|
| 89 |
+
sample_rng.manual_seed(seed)
|
| 90 |
+
|
| 91 |
+
# ------------------------- Text Generation -----------------------
|
| 92 |
+
while xgen.size(1) < max_length:
|
| 93 |
+
with torch.no_grad():
|
| 94 |
+
with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
|
| 95 |
+
logits, _ = model(xgen)
|
| 96 |
+
|
| 97 |
+
logits = logits[:, -1, :] # Last token logits
|
| 98 |
+
probs = F.softmax(logits, dim=-1)
|
| 99 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
| 100 |
+
|
| 101 |
+
sampled_idx = torch.multinomial(topk_probs, 1, generator=sample_rng)
|
| 102 |
+
next_token = torch.gather(topk_indices, -1, sampled_idx)
|
| 103 |
+
|
| 104 |
+
xgen = torch.cat([xgen, next_token], dim=1)
|
| 105 |
+
|
| 106 |
+
# ------------------------- Decode Output -------------------------
|
| 107 |
+
for i in range(num_return_sequences):
|
| 108 |
+
decoded_tokens = xgen[i, :max_length].tolist()
|
| 109 |
+
decoded_text = tokenizer.decode(decoded_tokens)
|
| 110 |
+
print(f"Rank sample {i}:\n{decoded_text}\n")
|
| 111 |
```
|
| 112 |
|
| 113 |
+
### Extract Embeddings
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
The following contains a code snippet illustrating how to use the model generate embeddings of all layers based on given inputs.
|
|
|
|
| 116 |
|
| 117 |
+
```python
|
| 118 |
+
import torch
|
| 119 |
+
import torch.nn.functional as F
|
| 120 |
+
import tiktoken
|
| 121 |
+
from huggingface_hub import HfApi, login
|
| 122 |
+
from ChronoGPT_inference import *
|
| 123 |
|
| 124 |
+
# ----------------------------- Setup -----------------------------
|
| 125 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 126 |
+
cache_dir = 'cache' # Update this path as needed
|
| 127 |
|
| 128 |
+
tokenizer = tiktoken.get_encoding("gpt2")
|
|
|
|
|
|
|
| 129 |
|
| 130 |
+
# -------------------------- Load Model --------------------------
|
| 131 |
+
model = ChronoGPT.from_pretrained(
|
| 132 |
+
"manelalab/chrono-gpt-v1-20241231",
|
| 133 |
+
trust_remote_code=True,
|
| 134 |
+
cache_dir=cache_dir
|
| 135 |
+
).to(device)
|
| 136 |
|
| 137 |
+
# ----------------------- Embedding Generation ---------------------
|
| 138 |
+
text = "Obviously, the time continuum has been disrupted, creating a new temporal event sequence resulting in this alternate reality."
|
| 139 |
|
| 140 |
+
inputs = torch.tensor(tokenizer.encode(text))[:max_length].reshape(1,-1).to(device)
|
| 141 |
+
logits, emb = model(inputs)
|
| 142 |
+
print('Dimension of embeddings:', emb[0].shape)
|
| 143 |
+
```
|
| 144 |
|
| 145 |
## Citation
|
| 146 |
|
|
|
|
| 153 |
}
|
| 154 |
```
|
| 155 |
|
| 156 |
+
### Model Card Authors
|
| 157 |
|
| 158 |
- Songrun He (Washington University in St. Louis, [email protected])
|
| 159 |
- Linying Lv (Washington University in St. Louis, [email protected])
|
| 160 |
- Asaf Manela (Washington University in St. Louis, [email protected])
|
| 161 |
+
- Jimmy Wu (Washington University in St. Louis, [email protected])
|
|
|