Upload modeling_chronogpt.py with huggingface_hub
Browse files- modeling_chronogpt.py +196 -0
modeling_chronogpt.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import math
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from typing import Optional, List, Tuple
|
| 8 |
+
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
|
| 9 |
+
|
| 10 |
+
def norm(x):
|
| 11 |
+
return F.rms_norm(x, (x.size(-1),))
|
| 12 |
+
|
| 13 |
+
class CastedLinear(nn.Linear):
|
| 14 |
+
def __init__(self, in_features, out_features):
|
| 15 |
+
super().__init__(in_features, out_features, bias=False)
|
| 16 |
+
@torch.inference_mode()
|
| 17 |
+
def forward(self, x):
|
| 18 |
+
return F.linear(x, self.weight.type_as(x))
|
| 19 |
+
|
| 20 |
+
class Rotary(nn.Module):
|
| 21 |
+
def __init__(self, dim, max_seq_len=65536):
|
| 22 |
+
super().__init__()
|
| 23 |
+
angular_freq = (1 / 1024) ** torch.linspace(0, 1, steps=dim//4, dtype=torch.float32)
|
| 24 |
+
angular_freq = torch.cat([angular_freq, angular_freq.new_zeros(dim//4)])
|
| 25 |
+
t = torch.arange(max_seq_len, dtype=torch.float32)
|
| 26 |
+
theta = torch.einsum('i,j -> ij', t, angular_freq)
|
| 27 |
+
self.register_buffer('cos', theta.cos(), persistent=False)
|
| 28 |
+
self.register_buffer('sin', theta.sin(), persistent=False)
|
| 29 |
+
@torch.inference_mode()
|
| 30 |
+
def forward(self, x):
|
| 31 |
+
cos, sin = self.cos[None, :x.size(-3), None, :], self.sin[None, :x.size(-3), None, :]
|
| 32 |
+
x1, x2 = x.float().chunk(2, dim=-1)
|
| 33 |
+
y1 = x1 * cos + x2 * sin
|
| 34 |
+
y2 = x1 * (-sin) + x2 * cos
|
| 35 |
+
return torch.cat((y1, y2), 3).type_as(x)
|
| 36 |
+
|
| 37 |
+
class CausalSelfAttention(nn.Module):
|
| 38 |
+
def __init__(self, dim, num_heads):
|
| 39 |
+
super().__init__()
|
| 40 |
+
assert dim % num_heads == 0
|
| 41 |
+
self.num_heads = num_heads
|
| 42 |
+
self.head_dim = dim // num_heads
|
| 43 |
+
self.c_q = CastedLinear(dim, dim)
|
| 44 |
+
self.c_k = CastedLinear(dim, dim)
|
| 45 |
+
self.c_v = CastedLinear(dim, dim)
|
| 46 |
+
self.lambdas = nn.Parameter(torch.tensor([0.5, 0.5]))
|
| 47 |
+
self.rotary = Rotary(self.head_dim)
|
| 48 |
+
self.c_proj = CastedLinear(dim, dim)
|
| 49 |
+
self.register_buffer('kv_cache', None, persistent=False)
|
| 50 |
+
@torch.inference_mode()
|
| 51 |
+
def forward(self, x, ve):
|
| 52 |
+
B, T = x.size(0), x.size(1)
|
| 53 |
+
q = self.c_q(x).view(B, T, self.num_heads, self.head_dim)
|
| 54 |
+
k = self.c_k(x).view(B, T, self.num_heads, self.head_dim)
|
| 55 |
+
v = self.c_v(x).view(B, T, self.num_heads, self.head_dim)
|
| 56 |
+
if ve is not None:
|
| 57 |
+
v = self.lambdas[0] * v + self.lambdas[1] * ve.view_as(v)
|
| 58 |
+
else:
|
| 59 |
+
v = self.lambdas[0] * v
|
| 60 |
+
q, k = norm(q), norm(k)
|
| 61 |
+
q, k = self.rotary(q), self.rotary(k)
|
| 62 |
+
if self.kv_cache is not None:
|
| 63 |
+
k = torch.cat([self.kv_cache[0], k], dim=1)
|
| 64 |
+
v = torch.cat([self.kv_cache[1], v], dim=1)
|
| 65 |
+
self.kv_cache = torch.stack([k, v])
|
| 66 |
+
if hasattr(F, 'scaled_dot_product_attention'):
|
| 67 |
+
y = F.scaled_dot_product_attention(
|
| 68 |
+
q.transpose(1, 2),
|
| 69 |
+
k.transpose(1, 2),
|
| 70 |
+
v.transpose(1, 2),
|
| 71 |
+
is_causal=True
|
| 72 |
+
)
|
| 73 |
+
else:
|
| 74 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(self.head_dim))
|
| 75 |
+
att = att.masked_fill(
|
| 76 |
+
torch.triu(torch.ones(T, T, device=x.device), diagonal=1).bool(),
|
| 77 |
+
float('-inf')
|
| 78 |
+
)
|
| 79 |
+
att = F.softmax(att, dim=-1)
|
| 80 |
+
y = att @ v
|
| 81 |
+
y = y.transpose(1, 2).contiguous().view(B, T, -1)
|
| 82 |
+
y = self.c_proj(y)
|
| 83 |
+
return y
|
| 84 |
+
|
| 85 |
+
class MLP(nn.Module):
|
| 86 |
+
def __init__(self, dim):
|
| 87 |
+
super().__init__()
|
| 88 |
+
self.c_fc = CastedLinear(dim, 4 * dim)
|
| 89 |
+
self.c_proj = CastedLinear(4 * dim, dim)
|
| 90 |
+
self.c_proj.weight.data.zero_()
|
| 91 |
+
@torch.inference_mode()
|
| 92 |
+
def forward(self, x):
|
| 93 |
+
x = self.c_fc(x)
|
| 94 |
+
x = F.relu(x).square()
|
| 95 |
+
x = self.c_proj(x)
|
| 96 |
+
return x
|
| 97 |
+
|
| 98 |
+
class Block(nn.Module):
|
| 99 |
+
def __init__(self, model_dim, num_heads, use_attn=True):
|
| 100 |
+
super().__init__()
|
| 101 |
+
self.attn = CausalSelfAttention(model_dim, num_heads) if use_attn else None
|
| 102 |
+
self.mlp = MLP(model_dim)
|
| 103 |
+
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
|
| 104 |
+
@torch.inference_mode()
|
| 105 |
+
def forward(self, x, ve, x0):
|
| 106 |
+
x = self.lambdas[0] * x + self.lambdas[1] * x0
|
| 107 |
+
if self.attn is not None:
|
| 108 |
+
x = x + self.attn(norm(x), ve)
|
| 109 |
+
x = x + self.mlp(norm(x))
|
| 110 |
+
return x
|
| 111 |
+
|
| 112 |
+
class ValueEmbedding(nn.Module):
|
| 113 |
+
def __init__(self, vocab_size, model_dim):
|
| 114 |
+
super().__init__()
|
| 115 |
+
self.embed = nn.ModuleList([nn.Embedding(vocab_size, model_dim) for _ in range(3)])
|
| 116 |
+
@torch.inference_mode()
|
| 117 |
+
def forward(self, inputs):
|
| 118 |
+
ve = [emb(inputs).bfloat16() for emb in self.embed]
|
| 119 |
+
ve = [ve[0], ve[1], ve[2], None, None, None, None, None, None, ve[0], ve[1], ve[2]]
|
| 120 |
+
return ve
|
| 121 |
+
|
| 122 |
+
class ChronoGPT(nn.Module, PyTorchModelHubMixin):
|
| 123 |
+
def __init__(self, vocab_size, num_layers, num_heads, model_dim, **kwargs):
|
| 124 |
+
super().__init__()
|
| 125 |
+
# Removed undefined "device" reference
|
| 126 |
+
self.num_heads = num_heads
|
| 127 |
+
self.vocab_size = vocab_size
|
| 128 |
+
self.embed = nn.Embedding(vocab_size, model_dim)
|
| 129 |
+
self.blocks = nn.ModuleList([Block(model_dim, num_heads, use_attn=(i != 7))
|
| 130 |
+
for i in range(num_layers)])
|
| 131 |
+
self.value_embeds = ValueEmbedding(vocab_size, model_dim)
|
| 132 |
+
self.lm_head = CastedLinear(model_dim, vocab_size)
|
| 133 |
+
self.lm_head.weight.data.zero_()
|
| 134 |
+
self.num_encoder_layers = num_layers // 2
|
| 135 |
+
self.num_decoder_layers = num_layers - self.num_encoder_layers
|
| 136 |
+
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
|
| 137 |
+
@torch.inference_mode()
|
| 138 |
+
def forward(self, inputs, past_key_values=None):
|
| 139 |
+
B = inputs.size(0)
|
| 140 |
+
if inputs.dim() == 1:
|
| 141 |
+
inputs = inputs.unsqueeze(0)
|
| 142 |
+
layer_outputs = []
|
| 143 |
+
x0 = norm(self.embed(inputs).bfloat16())
|
| 144 |
+
x = x0
|
| 145 |
+
layer_outputs.append(norm(x))
|
| 146 |
+
ve = [self.value_embeds(inputs[i].view(-1)) for i in range(B)]
|
| 147 |
+
ve = [torch.stack([ve[b][i] for b in range(B)]) if ve[0][i] is not None else None
|
| 148 |
+
for i in range(len(ve[0]))]
|
| 149 |
+
ve_enc, ve_dec = ve[:self.num_encoder_layers], ve[self.num_encoder_layers:]
|
| 150 |
+
if past_key_values is not None:
|
| 151 |
+
for i, block in enumerate(self.blocks):
|
| 152 |
+
if block.attn is not None:
|
| 153 |
+
block.attn.kv_cache = past_key_values[i]
|
| 154 |
+
present = []
|
| 155 |
+
skip_connections = []
|
| 156 |
+
for i in range(self.num_encoder_layers):
|
| 157 |
+
block = self.blocks[i]
|
| 158 |
+
x = block(x, ve_enc[i], x0)
|
| 159 |
+
if block.attn is not None:
|
| 160 |
+
present.append(block.attn.kv_cache)
|
| 161 |
+
block.attn.kv_cache = None
|
| 162 |
+
skip_connections.append(x)
|
| 163 |
+
layer_outputs.append(norm(x))
|
| 164 |
+
for i in range(self.num_decoder_layers):
|
| 165 |
+
x = x + self.skip_weights[i] * skip_connections.pop()
|
| 166 |
+
block = self.blocks[self.num_encoder_layers + i]
|
| 167 |
+
x = block(x, ve_dec[i], x0)
|
| 168 |
+
layer_outputs.append(norm(x))
|
| 169 |
+
if block.attn is not None:
|
| 170 |
+
present.append(block.attn.kv_cache)
|
| 171 |
+
block.attn.kv_cache = None
|
| 172 |
+
x = norm(x)
|
| 173 |
+
logits = self.lm_head(x)
|
| 174 |
+
logits = 15 * torch.tanh(logits / 15)
|
| 175 |
+
return logits.float(), layer_outputs
|
| 176 |
+
def save_pretrained(self, save_directory, **kwargs):
|
| 177 |
+
os.makedirs(save_directory, exist_ok=True)
|
| 178 |
+
torch.save(self.state_dict(), os.path.join(save_directory, "pytorch_model.bin"))
|
| 179 |
+
config = {
|
| 180 |
+
"model_type": "ChronoGPT",
|
| 181 |
+
"vocab_size": self.embed.num_embeddings,
|
| 182 |
+
"num_layers": len(self.blocks),
|
| 183 |
+
"num_heads": self.num_heads,
|
| 184 |
+
"model_dim": self.embed.embedding_dim
|
| 185 |
+
}
|
| 186 |
+
torch.save(config, os.path.join(save_directory, "config.pt"))
|
| 187 |
+
with open(os.path.join(save_directory, "config.json"), "w") as f:
|
| 188 |
+
json.dump(config, f)
|
| 189 |
+
@classmethod
|
| 190 |
+
def from_pretrained(cls, repo_id, cache_dir=None, **kwargs):
|
| 191 |
+
config_path = hf_hub_download(repo_id=repo_id, filename="config.pt", cache_dir=cache_dir)
|
| 192 |
+
bin_path = hf_hub_download(repo_id=repo_id, filename="pytorch_model.bin", cache_dir=cache_dir)
|
| 193 |
+
config = torch.load(config_path)
|
| 194 |
+
model = cls(**config)
|
| 195 |
+
model.load_state_dict(torch.load(bin_path))
|
| 196 |
+
return model
|