Upload ChronoGPT_inference.py with huggingface_hub
Browse files- ChronoGPT_inference.py +2 -86
ChronoGPT_inference.py
CHANGED
|
@@ -125,90 +125,6 @@ class Block(nn.Module):
|
|
| 125 |
return x
|
| 126 |
|
| 127 |
class ValueEmbedding(nn.Module):
|
| 128 |
-
def __init__(self, vocab_size, model_dim):
|
| 129 |
-
super().__init__()
|
| 130 |
-
self.embed = nn.ModuleList([nn.Embedding(vocab_size, model_dim) for _ in range(3)])
|
| 131 |
-
|
| 132 |
-
@torch.inference_mode()
|
| 133 |
-
def forward(self, inputs):
|
| 134 |
-
ve = [emb(inputs).bfloat16() for emb in self.embed]
|
| 135 |
-
ve = [ve[0], ve[1], ve[2], None, None, None, None, None, None, ve[0], ve[1], ve[2]]
|
| 136 |
-
return ve
|
| 137 |
-
|
| 138 |
-
class ChronoGPT(nn.Module, PyTorchModelHubMixin):
|
| 139 |
-
def __init__(self, vocab_size, num_layers, num_heads, model_dim, **kwargs):
|
| 140 |
-
super().__init__()
|
| 141 |
-
self.num_heads = num_heads
|
| 142 |
-
self.vocab_size = vocab_size # Store vocab_size as instance variable
|
| 143 |
-
self.embed = nn.Embedding(vocab_size, model_dim)
|
| 144 |
-
self.blocks = nn.ModuleList([Block(model_dim, num_heads, use_attn=(i != 7))
|
| 145 |
-
for i in range(num_layers)])
|
| 146 |
-
self.value_embeds = ValueEmbedding(vocab_size, model_dim)
|
| 147 |
-
self.lm_head = CastedLinear(model_dim, vocab_size)
|
| 148 |
-
self.lm_head.weight.data.zero_()
|
| 149 |
-
self.num_encoder_layers = num_layers // 2
|
| 150 |
-
self.num_decoder_layers = num_layers - self.num_encoder_layers
|
| 151 |
-
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
|
| 152 |
-
@torch.inference_mode()
|
| 153 |
-
def forward(self, inputs, past_key_values=None):
|
| 154 |
-
B = inputs.size(0)
|
| 155 |
-
if inputs.dim() == 1:
|
| 156 |
-
inputs = inputs.unsqueeze(0) # Add batch dimension if not present
|
| 157 |
-
|
| 158 |
-
x0 = norm(self.embed(inputs).bfloat16())
|
| 159 |
-
x = x0
|
| 160 |
-
|
| 161 |
-
# Modify value embedding handling for batched input
|
| 162 |
-
ve = [self.value_embeds(inputs[i].view(-1)) for i in range(B)]
|
| 163 |
-
ve = [torch.stack([ve[b][i] for b in range(B)]) if ve[0][i] is not None else None
|
| 164 |
-
for i in range(len(ve[0]))]
|
| 165 |
-
ve_enc, ve_dec = ve[:self.num_encoder_layers], ve[self.num_encoder_layers:]
|
| 166 |
-
|
| 167 |
-
# Handle cached states for batched input
|
| 168 |
-
if past_key_values is not None:
|
| 169 |
-
for i, block in enumerate(self.blocks):
|
| 170 |
-
if block.attn is not None:
|
| 171 |
-
block.attn.kv_cache = past_key_values[i]
|
| 172 |
-
|
| 173 |
-
present = []
|
| 174 |
-
layer_outputs = []
|
| 175 |
-
skip_connections = []
|
| 176 |
-
|
| 177 |
-
# Process through encoder layers
|
| 178 |
-
for i in range(self.num_encoder_layers):
|
| 179 |
-
block = self.blocks[i]
|
| 180 |
-
x = block(x, ve_enc[i], x0)
|
| 181 |
-
if block.attn is not None:
|
| 182 |
-
present.append(block.attn.kv_cache)
|
| 183 |
-
block.attn.kv_cache = None
|
| 184 |
-
skip_connections.append(x)
|
| 185 |
-
layer_outputs.append(norm(x))
|
| 186 |
-
|
| 187 |
-
# Process through decoder layers
|
| 188 |
-
for i in range(self.num_decoder_layers):
|
| 189 |
-
x = x + self.skip_weights[i] * skip_connections.pop()
|
| 190 |
-
block = self.blocks[self.num_encoder_layers + i]
|
| 191 |
-
x = block(x, ve_dec[i], x0)
|
| 192 |
-
layer_outputs.append(norm(x))
|
| 193 |
-
if block.attn is not None:
|
| 194 |
-
present.append(block.attn.kv_cache)
|
| 195 |
-
block.attn.kv_cache = None
|
| 196 |
-
|
| 197 |
-
x = norm(x)
|
| 198 |
-
logits = self.lm_head(x)
|
| 199 |
-
logits = 15 * torch.tanh(logits / 15)
|
| 200 |
-
|
| 201 |
-
return logits.float(), layer_outputs
|
| 202 |
-
@classmethod
|
| 203 |
-
def from_pretrained(cls, repo_id, cache_dir=None, **kwargs):
|
| 204 |
-
config_path = hf_hub_download(repo_id=repo_id, filename="config.pt", cache_dir=cache_dir)
|
| 205 |
-
bin_path = hf_hub_download(repo_id=repo_id, filename="pytorch_model.bin", cache_dir=cache_dir)
|
| 206 |
-
config = torch.load(config_path)
|
| 207 |
-
model = cls(**config)
|
| 208 |
-
model.load_state_dict(torch.load(bin_path))
|
| 209 |
-
return model
|
| 210 |
-
|
| 211 |
-
class ValueEmbedding_xl(nn.Module):
|
| 212 |
def __init__(self, vocab_size, model_dim, num_layers=52):
|
| 213 |
super().__init__()
|
| 214 |
self.num_layers = num_layers
|
|
@@ -228,14 +144,14 @@ class ValueEmbedding_xl(nn.Module):
|
|
| 228 |
return encoder + decoder
|
| 229 |
|
| 230 |
|
| 231 |
-
class
|
| 232 |
def __init__(self, vocab_size, num_layers, num_heads, model_dim, **kwargs):
|
| 233 |
super().__init__()
|
| 234 |
self.num_heads = num_heads
|
| 235 |
self.vocab_size = vocab_size # Store vocab_size as instance variable
|
| 236 |
self.embed = nn.Embedding(vocab_size, model_dim)
|
| 237 |
self.blocks = nn.ModuleList([Block(model_dim, num_heads, use_attn=True) for i in range(num_layers)])
|
| 238 |
-
self.value_embeds =
|
| 239 |
self.lm_head = CastedLinear(model_dim, vocab_size)
|
| 240 |
self.lm_head.weight.data.zero_()
|
| 241 |
self.num_encoder_layers = num_layers // 2
|
|
|
|
| 125 |
return x
|
| 126 |
|
| 127 |
class ValueEmbedding(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
def __init__(self, vocab_size, model_dim, num_layers=52):
|
| 129 |
super().__init__()
|
| 130 |
self.num_layers = num_layers
|
|
|
|
| 144 |
return encoder + decoder
|
| 145 |
|
| 146 |
|
| 147 |
+
class ChronoGPT(nn.Module, PyTorchModelHubMixin):
|
| 148 |
def __init__(self, vocab_size, num_layers, num_heads, model_dim, **kwargs):
|
| 149 |
super().__init__()
|
| 150 |
self.num_heads = num_heads
|
| 151 |
self.vocab_size = vocab_size # Store vocab_size as instance variable
|
| 152 |
self.embed = nn.Embedding(vocab_size, model_dim)
|
| 153 |
self.blocks = nn.ModuleList([Block(model_dim, num_heads, use_attn=True) for i in range(num_layers)])
|
| 154 |
+
self.value_embeds = ValueEmbedding(vocab_size, model_dim, num_layers=num_layers)
|
| 155 |
self.lm_head = CastedLinear(model_dim, vocab_size)
|
| 156 |
self.lm_head.weight.data.zero_()
|
| 157 |
self.num_encoder_layers = num_layers // 2
|