LinyingLyu commited on
Commit
c42231e
·
verified ·
1 Parent(s): 59d87e5

Upload ChronoGPT_inference.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. ChronoGPT_inference.py +315 -0
ChronoGPT_inference.py ADDED
@@ -0,0 +1,315 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import math
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from typing import Optional, List, Tuple
8
+ from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
9
+
10
+ def norm(x):
11
+ return F.rms_norm(x, (x.size(-1),))
12
+
13
+ class CastedLinear(nn.Linear):
14
+ def __init__(self, in_features, out_features):
15
+ super().__init__(in_features, out_features, bias=False)
16
+
17
+ @torch.inference_mode()
18
+ def forward(self, x):
19
+ return F.linear(x, self.weight.type_as(x))
20
+
21
+ class Rotary(nn.Module):
22
+ def __init__(self, dim, max_seq_len=65536):
23
+ super().__init__()
24
+ angular_freq = (1 / 1024) ** torch.linspace(0, 1, steps=dim//4, dtype=torch.float32)
25
+ angular_freq = torch.cat([angular_freq, angular_freq.new_zeros(dim//4)])
26
+ t = torch.arange(max_seq_len, dtype=torch.float32)
27
+ theta = torch.einsum('i,j -> ij', t, angular_freq)
28
+ self.register_buffer('cos', theta.cos(), persistent=False)
29
+ self.register_buffer('sin', theta.sin(), persistent=False)
30
+
31
+ @torch.inference_mode()
32
+ def forward(self, x):
33
+ cos, sin = self.cos[None, :x.size(-3), None, :], self.sin[None, :x.size(-3), None, :]
34
+ x1, x2 = x.float().chunk(2, dim=-1)
35
+ y1 = x1 * cos + x2 * sin
36
+ y2 = x1 * (-sin) + x2 * cos
37
+ return torch.cat((y1, y2), 3).type_as(x)
38
+
39
+ class CausalSelfAttention(nn.Module):
40
+ def __init__(self, dim, num_heads):
41
+ super().__init__()
42
+ assert dim % num_heads == 0
43
+ self.num_heads = num_heads
44
+ self.head_dim = dim // num_heads
45
+ self.c_q = CastedLinear(dim, dim)
46
+ self.c_k = CastedLinear(dim, dim)
47
+ self.c_v = CastedLinear(dim, dim)
48
+ self.lambdas = nn.Parameter(torch.tensor([0.5, 0.5]))
49
+ self.rotary = Rotary(self.head_dim)
50
+ self.c_proj = CastedLinear(dim, dim)
51
+ self.register_buffer('kv_cache', None, persistent=False)
52
+
53
+ @torch.inference_mode()
54
+ def forward(self, x, ve):
55
+ B, T = x.size(0), x.size(1)
56
+
57
+ # Generate Q, K, V
58
+ q = self.c_q(x).view(B, T, self.num_heads, self.head_dim)
59
+ k = self.c_k(x).view(B, T, self.num_heads, self.head_dim)
60
+ v = self.c_v(x).view(B, T, self.num_heads, self.head_dim)
61
+
62
+ if ve is not None:
63
+ v = self.lambdas[0] * v + self.lambdas[1] * ve.view_as(v)
64
+ else:
65
+ v = self.lambdas[0] * v
66
+
67
+ q, k = norm(q), norm(k)
68
+ q, k = self.rotary(q), self.rotary(k)
69
+
70
+ # Use KV cache if available
71
+ if self.kv_cache is not None:
72
+ k = torch.cat([self.kv_cache[0], k], dim=1)
73
+ v = torch.cat([self.kv_cache[1], v], dim=1)
74
+ self.kv_cache = torch.stack([k, v])
75
+
76
+ # Efficient attention with flash attention if available
77
+ if hasattr(F, 'scaled_dot_product_attention'):
78
+ y = F.scaled_dot_product_attention(
79
+ q.transpose(1, 2), # (B, num_heads, T, head_dim)
80
+ k.transpose(1, 2), # (B, num_heads, T, head_dim)
81
+ v.transpose(1, 2), # (B, num_heads, T, head_dim)
82
+ is_causal=True
83
+ )
84
+ else:
85
+ # Fallback to regular attention
86
+ att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(self.head_dim))
87
+ att = att.masked_fill(
88
+ torch.triu(torch.ones(T, T, device=x.device), diagonal=1).bool(),
89
+ float('-inf')
90
+ )
91
+ att = F.softmax(att, dim=-1)
92
+ y = att @ v
93
+
94
+ y = y.transpose(1, 2).contiguous().view(B, T, -1)
95
+ y = self.c_proj(y)
96
+ return y
97
+
98
+ class MLP(nn.Module):
99
+ def __init__(self, dim):
100
+ super().__init__()
101
+ self.c_fc = CastedLinear(dim, 4 * dim)
102
+ self.c_proj = CastedLinear(4 * dim, dim)
103
+ self.c_proj.weight.data.zero_()
104
+
105
+ @torch.inference_mode()
106
+ def forward(self, x):
107
+ x = self.c_fc(x)
108
+ x = F.relu(x).square()
109
+ x = self.c_proj(x)
110
+ return x
111
+
112
+ class Block(nn.Module):
113
+ def __init__(self, model_dim, num_heads, use_attn=True):
114
+ super().__init__()
115
+ self.attn = CausalSelfAttention(model_dim, num_heads) if use_attn else None
116
+ self.mlp = MLP(model_dim)
117
+ self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
118
+
119
+ @torch.inference_mode()
120
+ def forward(self, x, ve, x0):
121
+ x = self.lambdas[0] * x + self.lambdas[1] * x0
122
+ if self.attn is not None:
123
+ x = x + self.attn(norm(x), ve)
124
+ x = x + self.mlp(norm(x))
125
+ return x
126
+
127
+ class ValueEmbedding(nn.Module):
128
+ def __init__(self, vocab_size, model_dim):
129
+ super().__init__()
130
+ self.embed = nn.ModuleList([nn.Embedding(vocab_size, model_dim) for _ in range(3)])
131
+
132
+ @torch.inference_mode()
133
+ def forward(self, inputs):
134
+ ve = [emb(inputs).bfloat16() for emb in self.embed]
135
+ ve = [ve[0], ve[1], ve[2], None, None, None, None, None, None, ve[0], ve[1], ve[2]]
136
+ return ve
137
+
138
+ class ChronoGPT(nn.Module, PyTorchModelHubMixin):
139
+ def __init__(self, vocab_size, num_layers, num_heads, model_dim, **kwargs):
140
+ super().__init__()
141
+ self.num_heads = num_heads
142
+ self.vocab_size = vocab_size # Store vocab_size as instance variable
143
+ self.embed = nn.Embedding(vocab_size, model_dim)
144
+ self.blocks = nn.ModuleList([Block(model_dim, num_heads, use_attn=(i != 7))
145
+ for i in range(num_layers)])
146
+ self.value_embeds = ValueEmbedding(vocab_size, model_dim)
147
+ self.lm_head = CastedLinear(model_dim, vocab_size)
148
+ self.lm_head.weight.data.zero_()
149
+ self.num_encoder_layers = num_layers // 2
150
+ self.num_decoder_layers = num_layers - self.num_encoder_layers
151
+ self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
152
+ @torch.inference_mode()
153
+ def forward(self, inputs, past_key_values=None):
154
+ B = inputs.size(0)
155
+ if inputs.dim() == 1:
156
+ inputs = inputs.unsqueeze(0) # Add batch dimension if not present
157
+
158
+ x0 = norm(self.embed(inputs).bfloat16())
159
+ x = x0
160
+
161
+ # Modify value embedding handling for batched input
162
+ ve = [self.value_embeds(inputs[i].view(-1)) for i in range(B)]
163
+ ve = [torch.stack([ve[b][i] for b in range(B)]) if ve[0][i] is not None else None
164
+ for i in range(len(ve[0]))]
165
+ ve_enc, ve_dec = ve[:self.num_encoder_layers], ve[self.num_encoder_layers:]
166
+
167
+ # Handle cached states for batched input
168
+ if past_key_values is not None:
169
+ for i, block in enumerate(self.blocks):
170
+ if block.attn is not None:
171
+ block.attn.kv_cache = past_key_values[i]
172
+
173
+ present = []
174
+ layer_outputs = []
175
+ skip_connections = []
176
+
177
+ # Process through encoder layers
178
+ for i in range(self.num_encoder_layers):
179
+ block = self.blocks[i]
180
+ x = block(x, ve_enc[i], x0)
181
+ if block.attn is not None:
182
+ present.append(block.attn.kv_cache)
183
+ block.attn.kv_cache = None
184
+ skip_connections.append(x)
185
+ layer_outputs.append(norm(x))
186
+
187
+ # Process through decoder layers
188
+ for i in range(self.num_decoder_layers):
189
+ x = x + self.skip_weights[i] * skip_connections.pop()
190
+ block = self.blocks[self.num_encoder_layers + i]
191
+ x = block(x, ve_dec[i], x0)
192
+ layer_outputs.append(norm(x))
193
+ if block.attn is not None:
194
+ present.append(block.attn.kv_cache)
195
+ block.attn.kv_cache = None
196
+
197
+ x = norm(x)
198
+ logits = self.lm_head(x)
199
+ logits = 15 * torch.tanh(logits / 15)
200
+
201
+ return logits.float(), layer_outputs
202
+ @classmethod
203
+ def from_pretrained(cls, repo_id, cache_dir=None, **kwargs):
204
+ config_path = hf_hub_download(repo_id=repo_id, filename="config.pt", cache_dir=cache_dir)
205
+ bin_path = hf_hub_download(repo_id=repo_id, filename="pytorch_model.bin", cache_dir=cache_dir)
206
+ config = torch.load(config_path)
207
+ model = cls(**config)
208
+ model.load_state_dict(torch.load(bin_path))
209
+ return model
210
+
211
+ class ValueEmbedding_xl(nn.Module):
212
+ def __init__(self, vocab_size, model_dim, num_layers=52):
213
+ super().__init__()
214
+ self.num_layers = num_layers
215
+ # We only have 3 distinct embedding modules, reused at beginning and end.
216
+ self.embed = nn.ModuleList([nn.Embedding(vocab_size, model_dim) for _ in range(3)])
217
+
218
+ def forward(self, inputs):
219
+ # Compute the base embeddings (a list of length 3)
220
+ base = [emb(inputs).bfloat16() for emb in self.embed]
221
+ L = self.num_layers
222
+ half = L // 2 # number of encoder layers (assumes num_layers is even)
223
+ # Build encoder: first 3 layers get embeddings, rest get None.
224
+ encoder = [base[i] if i < 3 else None for i in range(half)]
225
+ # Build decoder: last 3 layers get embeddings, others get None.
226
+ # For decoder layers, if i is in [half-3, half-1] then assign base[0], base[1], base[2]
227
+ decoder = [base[i - (half - 3)] if i >= (half - 3) else None for i in range(half)]
228
+ return encoder + decoder
229
+
230
+
231
+ class ChronoGPT_xl(nn.Module, PyTorchModelHubMixin):
232
+ def __init__(self, vocab_size, num_layers, num_heads, model_dim, **kwargs):
233
+ super().__init__()
234
+ self.num_heads = num_heads
235
+ self.vocab_size = vocab_size # Store vocab_size as instance variable
236
+ self.embed = nn.Embedding(vocab_size, model_dim)
237
+ self.blocks = nn.ModuleList([Block(model_dim, num_heads, use_attn=True) for i in range(num_layers)])
238
+ self.value_embeds = ValueEmbedding_xl(vocab_size, model_dim, num_layers=num_layers)
239
+ self.lm_head = CastedLinear(model_dim, vocab_size)
240
+ self.lm_head.weight.data.zero_()
241
+ self.num_encoder_layers = num_layers // 2
242
+ self.num_decoder_layers = num_layers - self.num_encoder_layers
243
+ self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
244
+ @torch.inference_mode()
245
+ def forward(self, inputs, past_key_values=None):
246
+ # Remove fixed batch size assumption
247
+ B = inputs.size(0) # Get batch size from input tensor
248
+ if inputs.dim() == 1:
249
+ inputs = inputs.unsqueeze(0) # Add batch dimension if not present
250
+
251
+ x0 = norm(self.embed(inputs).bfloat16())
252
+ x = x0
253
+
254
+ # Modify value embedding handling for batched input
255
+ ve = [self.value_embeds(inputs[i].view(-1)) for i in range(B)]
256
+ ve = [torch.stack([ve[b][i] for b in range(B)]) if ve[0][i] is not None else None
257
+ for i in range(len(ve[0]))]
258
+ ve_enc, ve_dec = ve[:self.num_encoder_layers], ve[self.num_encoder_layers:]
259
+
260
+ # Handle cached states for batched input
261
+ if past_key_values is not None:
262
+ for i, block in enumerate(self.blocks):
263
+ if block.attn is not None:
264
+ block.attn.kv_cache = past_key_values[i]
265
+
266
+ present = []
267
+ layer_outputs = []
268
+ skip_connections = []
269
+
270
+ # Process through encoder layers
271
+ for i in range(self.num_encoder_layers):
272
+ block = self.blocks[i]
273
+ x = block(x, ve_enc[i], x0)
274
+ if block.attn is not None:
275
+ present.append(block.attn.kv_cache)
276
+ block.attn.kv_cache = None
277
+ skip_connections.append(x)
278
+ layer_outputs.append(norm(x))
279
+
280
+ # Process through decoder layers
281
+ for i in range(self.num_decoder_layers):
282
+ x = x + self.skip_weights[i] * skip_connections.pop()
283
+ block = self.blocks[self.num_encoder_layers + i]
284
+ x = block(x, ve_dec[i], x0)
285
+ layer_outputs.append(norm(x))
286
+ if block.attn is not None:
287
+ present.append(block.attn.kv_cache)
288
+ block.attn.kv_cache = None
289
+
290
+ x = norm(x)
291
+ logits = self.lm_head(x)
292
+ logits = 15 * torch.tanh(logits / 15)
293
+
294
+ return logits.float(), layer_outputs
295
+ def save_pretrained(self, save_directory, **kwargs):
296
+ os.makedirs(save_directory, exist_ok=True)
297
+ torch.save(self.state_dict(), os.path.join(save_directory, "pytorch_model.bin"))
298
+ config = {
299
+ "model_type": "ChronoGPT",
300
+ "vocab_size": self.embed.num_embeddings,
301
+ "num_layers": len(self.blocks),
302
+ "num_heads": self.num_heads,
303
+ "model_dim": self.embed.embedding_dim
304
+ }
305
+ torch.save(config, os.path.join(save_directory, "config.pt"))
306
+ with open(os.path.join(save_directory, "config.json"), "w") as f:
307
+ json.dump(config, f)
308
+ @classmethod
309
+ def from_pretrained(cls, repo_id, cache_dir=None, **kwargs):
310
+ config_path = hf_hub_download(repo_id=repo_id, filename="config.pt", cache_dir=cache_dir)
311
+ bin_path = hf_hub_download(repo_id=repo_id, filename="pytorch_model.bin", cache_dir=cache_dir)
312
+ config = torch.load(config_path)
313
+ model = cls(**config)
314
+ model.load_state_dict(torch.load(bin_path))
315
+ return model