LinyingLyu commited on
Commit
8242d05
·
verified ·
1 Parent(s): 5f4c03d

Delete modeling_chronogpt.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. modeling_chronogpt.py +0 -196
modeling_chronogpt.py DELETED
@@ -1,196 +0,0 @@
1
- import os
2
- import json
3
- import math
4
- import torch
5
- import torch.nn as nn
6
- import torch.nn.functional as F
7
- from typing import Optional, List, Tuple
8
- from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
9
-
10
- def norm(x):
11
- return F.rms_norm(x, (x.size(-1),))
12
-
13
- class CastedLinear(nn.Linear):
14
- def __init__(self, in_features, out_features):
15
- super().__init__(in_features, out_features, bias=False)
16
- @torch.inference_mode()
17
- def forward(self, x):
18
- return F.linear(x, self.weight.type_as(x))
19
-
20
- class Rotary(nn.Module):
21
- def __init__(self, dim, max_seq_len=65536):
22
- super().__init__()
23
- angular_freq = (1 / 1024) ** torch.linspace(0, 1, steps=dim//4, dtype=torch.float32)
24
- angular_freq = torch.cat([angular_freq, angular_freq.new_zeros(dim//4)])
25
- t = torch.arange(max_seq_len, dtype=torch.float32)
26
- theta = torch.einsum('i,j -> ij', t, angular_freq)
27
- self.register_buffer('cos', theta.cos(), persistent=False)
28
- self.register_buffer('sin', theta.sin(), persistent=False)
29
- @torch.inference_mode()
30
- def forward(self, x):
31
- cos, sin = self.cos[None, :x.size(-3), None, :], self.sin[None, :x.size(-3), None, :]
32
- x1, x2 = x.float().chunk(2, dim=-1)
33
- y1 = x1 * cos + x2 * sin
34
- y2 = x1 * (-sin) + x2 * cos
35
- return torch.cat((y1, y2), 3).type_as(x)
36
-
37
- class CausalSelfAttention(nn.Module):
38
- def __init__(self, dim, num_heads):
39
- super().__init__()
40
- assert dim % num_heads == 0
41
- self.num_heads = num_heads
42
- self.head_dim = dim // num_heads
43
- self.c_q = CastedLinear(dim, dim)
44
- self.c_k = CastedLinear(dim, dim)
45
- self.c_v = CastedLinear(dim, dim)
46
- self.lambdas = nn.Parameter(torch.tensor([0.5, 0.5]))
47
- self.rotary = Rotary(self.head_dim)
48
- self.c_proj = CastedLinear(dim, dim)
49
- self.register_buffer('kv_cache', None, persistent=False)
50
- @torch.inference_mode()
51
- def forward(self, x, ve):
52
- B, T = x.size(0), x.size(1)
53
- q = self.c_q(x).view(B, T, self.num_heads, self.head_dim)
54
- k = self.c_k(x).view(B, T, self.num_heads, self.head_dim)
55
- v = self.c_v(x).view(B, T, self.num_heads, self.head_dim)
56
- if ve is not None:
57
- v = self.lambdas[0] * v + self.lambdas[1] * ve.view_as(v)
58
- else:
59
- v = self.lambdas[0] * v
60
- q, k = norm(q), norm(k)
61
- q, k = self.rotary(q), self.rotary(k)
62
- if self.kv_cache is not None:
63
- k = torch.cat([self.kv_cache[0], k], dim=1)
64
- v = torch.cat([self.kv_cache[1], v], dim=1)
65
- self.kv_cache = torch.stack([k, v])
66
- if hasattr(F, 'scaled_dot_product_attention'):
67
- y = F.scaled_dot_product_attention(
68
- q.transpose(1, 2),
69
- k.transpose(1, 2),
70
- v.transpose(1, 2),
71
- is_causal=True
72
- )
73
- else:
74
- att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(self.head_dim))
75
- att = att.masked_fill(
76
- torch.triu(torch.ones(T, T, device=x.device), diagonal=1).bool(),
77
- float('-inf')
78
- )
79
- att = F.softmax(att, dim=-1)
80
- y = att @ v
81
- y = y.transpose(1, 2).contiguous().view(B, T, -1)
82
- y = self.c_proj(y)
83
- return y
84
-
85
- class MLP(nn.Module):
86
- def __init__(self, dim):
87
- super().__init__()
88
- self.c_fc = CastedLinear(dim, 4 * dim)
89
- self.c_proj = CastedLinear(4 * dim, dim)
90
- self.c_proj.weight.data.zero_()
91
- @torch.inference_mode()
92
- def forward(self, x):
93
- x = self.c_fc(x)
94
- x = F.relu(x).square()
95
- x = self.c_proj(x)
96
- return x
97
-
98
- class Block(nn.Module):
99
- def __init__(self, model_dim, num_heads, use_attn=True):
100
- super().__init__()
101
- self.attn = CausalSelfAttention(model_dim, num_heads) if use_attn else None
102
- self.mlp = MLP(model_dim)
103
- self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
104
- @torch.inference_mode()
105
- def forward(self, x, ve, x0):
106
- x = self.lambdas[0] * x + self.lambdas[1] * x0
107
- if self.attn is not None:
108
- x = x + self.attn(norm(x), ve)
109
- x = x + self.mlp(norm(x))
110
- return x
111
-
112
- class ValueEmbedding(nn.Module):
113
- def __init__(self, vocab_size, model_dim):
114
- super().__init__()
115
- self.embed = nn.ModuleList([nn.Embedding(vocab_size, model_dim) for _ in range(3)])
116
- @torch.inference_mode()
117
- def forward(self, inputs):
118
- ve = [emb(inputs).bfloat16() for emb in self.embed]
119
- ve = [ve[0], ve[1], ve[2], None, None, None, None, None, None, ve[0], ve[1], ve[2]]
120
- return ve
121
-
122
- class ChronoGPT(nn.Module, PyTorchModelHubMixin):
123
- def __init__(self, vocab_size, num_layers, num_heads, model_dim, **kwargs):
124
- super().__init__()
125
- # Removed undefined "device" reference
126
- self.num_heads = num_heads
127
- self.vocab_size = vocab_size
128
- self.embed = nn.Embedding(vocab_size, model_dim)
129
- self.blocks = nn.ModuleList([Block(model_dim, num_heads, use_attn=(i != 7))
130
- for i in range(num_layers)])
131
- self.value_embeds = ValueEmbedding(vocab_size, model_dim)
132
- self.lm_head = CastedLinear(model_dim, vocab_size)
133
- self.lm_head.weight.data.zero_()
134
- self.num_encoder_layers = num_layers // 2
135
- self.num_decoder_layers = num_layers - self.num_encoder_layers
136
- self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
137
- @torch.inference_mode()
138
- def forward(self, inputs, past_key_values=None):
139
- B = inputs.size(0)
140
- if inputs.dim() == 1:
141
- inputs = inputs.unsqueeze(0)
142
- layer_outputs = []
143
- x0 = norm(self.embed(inputs).bfloat16())
144
- x = x0
145
- layer_outputs.append(norm(x))
146
- ve = [self.value_embeds(inputs[i].view(-1)) for i in range(B)]
147
- ve = [torch.stack([ve[b][i] for b in range(B)]) if ve[0][i] is not None else None
148
- for i in range(len(ve[0]))]
149
- ve_enc, ve_dec = ve[:self.num_encoder_layers], ve[self.num_encoder_layers:]
150
- if past_key_values is not None:
151
- for i, block in enumerate(self.blocks):
152
- if block.attn is not None:
153
- block.attn.kv_cache = past_key_values[i]
154
- present = []
155
- skip_connections = []
156
- for i in range(self.num_encoder_layers):
157
- block = self.blocks[i]
158
- x = block(x, ve_enc[i], x0)
159
- if block.attn is not None:
160
- present.append(block.attn.kv_cache)
161
- block.attn.kv_cache = None
162
- skip_connections.append(x)
163
- layer_outputs.append(norm(x))
164
- for i in range(self.num_decoder_layers):
165
- x = x + self.skip_weights[i] * skip_connections.pop()
166
- block = self.blocks[self.num_encoder_layers + i]
167
- x = block(x, ve_dec[i], x0)
168
- layer_outputs.append(norm(x))
169
- if block.attn is not None:
170
- present.append(block.attn.kv_cache)
171
- block.attn.kv_cache = None
172
- x = norm(x)
173
- logits = self.lm_head(x)
174
- logits = 15 * torch.tanh(logits / 15)
175
- return logits.float(), layer_outputs
176
- def save_pretrained(self, save_directory, **kwargs):
177
- os.makedirs(save_directory, exist_ok=True)
178
- torch.save(self.state_dict(), os.path.join(save_directory, "pytorch_model.bin"))
179
- config = {
180
- "model_type": "ChronoGPT",
181
- "vocab_size": self.embed.num_embeddings,
182
- "num_layers": len(self.blocks),
183
- "num_heads": self.num_heads,
184
- "model_dim": self.embed.embedding_dim
185
- }
186
- torch.save(config, os.path.join(save_directory, "config.pt"))
187
- with open(os.path.join(save_directory, "config.json"), "w") as f:
188
- json.dump(config, f)
189
- @classmethod
190
- def from_pretrained(cls, repo_id, cache_dir=None, **kwargs):
191
- config_path = hf_hub_download(repo_id=repo_id, filename="config.pt", cache_dir=cache_dir)
192
- bin_path = hf_hub_download(repo_id=repo_id, filename="pytorch_model.bin", cache_dir=cache_dir)
193
- config = torch.load(config_path)
194
- model = cls(**config)
195
- model.load_state_dict(torch.load(bin_path))
196
- return model