|  |  | 
					
						
						|  | import argparse | 
					
						
						|  | import re | 
					
						
						|  | from typing import Dict | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from datasets import Audio, Dataset, load_dataset, load_metric | 
					
						
						|  |  | 
					
						
						|  | from transformers import AutoFeatureExtractor, pipeline | 
					
						
						|  |  | 
					
						
						|  | import re | 
					
						
						|  | from num2words import num2words | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def log_results(result: Dataset, args: Dict[str, str]): | 
					
						
						|  | """DO NOT CHANGE. This function computes and logs the result metrics.""" | 
					
						
						|  |  | 
					
						
						|  | log_outputs = args.log_outputs | 
					
						
						|  | dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | wer = load_metric("wer") | 
					
						
						|  | cer = load_metric("cer") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | wer_result = wer.compute(references=result["target"], predictions=result["prediction"]) | 
					
						
						|  | cer_result = cer.compute(references=result["target"], predictions=result["prediction"]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | result_str = f"WER: {wer_result}\n" f"CER: {cer_result}" | 
					
						
						|  | print(result_str) | 
					
						
						|  |  | 
					
						
						|  | with open(f"{dataset_id}_eval_results.txt", "w") as f: | 
					
						
						|  | f.write(result_str) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if log_outputs is not None: | 
					
						
						|  | pred_file = f"log_{dataset_id}_predictions.txt" | 
					
						
						|  | target_file = f"log_{dataset_id}_targets.txt" | 
					
						
						|  |  | 
					
						
						|  | with open(pred_file, "w") as p, open(target_file, "w") as t: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def write_to_file(batch, i): | 
					
						
						|  | p.write(f"{i}" + "\n") | 
					
						
						|  | p.write(batch["prediction"] + "\n") | 
					
						
						|  | t.write(f"{i}" + "\n") | 
					
						
						|  | t.write(batch["target"] + "\n") | 
					
						
						|  |  | 
					
						
						|  | result.map(write_to_file, with_indices=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def spell_num(text): | 
					
						
						|  | l = [] | 
					
						
						|  | for t in text.split(): | 
					
						
						|  | if t.isdigit(): | 
					
						
						|  | l.append(num2words(t, lang='de')) | 
					
						
						|  | else: | 
					
						
						|  | l.append(t) | 
					
						
						|  |  | 
					
						
						|  | return ' '.join(l) | 
					
						
						|  |  | 
					
						
						|  | ALLOWED_CHARS = { | 
					
						
						|  | 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', | 
					
						
						|  | 'ä', 'ö', 'ü', | 
					
						
						|  | '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', | 
					
						
						|  | ' ', | 
					
						
						|  | ',', ';', ':', '.', '?', '!', | 
					
						
						|  | } | 
					
						
						|  | WHITESPACE_REGEX = re.compile(r'[ \t]+') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def preprocess_transcript_for_corpus(transcript): | 
					
						
						|  | transcript = transcript.lower() | 
					
						
						|  | transcript = transcript.replace('á', 'a') | 
					
						
						|  | transcript = transcript.replace('à', 'a') | 
					
						
						|  | transcript = transcript.replace('â', 'a') | 
					
						
						|  | transcript = transcript.replace('ç', 'c') | 
					
						
						|  | transcript = transcript.replace('é', 'e') | 
					
						
						|  | transcript = transcript.replace('è', 'e') | 
					
						
						|  | transcript = transcript.replace('ê', 'e') | 
					
						
						|  | transcript = transcript.replace('í', 'i') | 
					
						
						|  | transcript = transcript.replace('ì', 'i') | 
					
						
						|  | transcript = transcript.replace('î', 'i') | 
					
						
						|  | transcript = transcript.replace('ñ', 'n') | 
					
						
						|  | transcript = transcript.replace('ó', 'o') | 
					
						
						|  | transcript = transcript.replace('ò', 'o') | 
					
						
						|  | transcript = transcript.replace('ô', 'o') | 
					
						
						|  | transcript = transcript.replace('ú', 'u') | 
					
						
						|  | transcript = transcript.replace('ù', 'u') | 
					
						
						|  | transcript = transcript.replace('û', 'u') | 
					
						
						|  | transcript = transcript.replace('ș', 's') | 
					
						
						|  | transcript = transcript.replace('ş', 's') | 
					
						
						|  | transcript = transcript.replace('ß', 'ss') | 
					
						
						|  | transcript = transcript.replace('-', ' ') | 
					
						
						|  |  | 
					
						
						|  | transcript = transcript.replace('–', ' ') | 
					
						
						|  | transcript = transcript.replace('/', ' ') | 
					
						
						|  | transcript = WHITESPACE_REGEX.sub(' ', transcript) | 
					
						
						|  | transcript = ''.join([char for char in transcript if char in ALLOWED_CHARS]) | 
					
						
						|  | transcript = WHITESPACE_REGEX.sub(' ', transcript) | 
					
						
						|  | transcript = spell_num(transcript) | 
					
						
						|  | transcript = transcript.replace('ß', 'ss') | 
					
						
						|  | transcript = transcript.strip() | 
					
						
						|  |  | 
					
						
						|  | return transcript | 
					
						
						|  |  | 
					
						
						|  | def normalize_text(text: str) -> str: | 
					
						
						|  | """DO ADAPT FOR YOUR USE CASE. this function normalizes the target text.""" | 
					
						
						|  |  | 
					
						
						|  | text = preprocess_transcript_for_corpus(txt) | 
					
						
						|  | chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]' | 
					
						
						|  | text = re.sub(chars_to_ignore_regex, "", text.lower()) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return text.strip() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main(args): | 
					
						
						|  |  | 
					
						
						|  | dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id) | 
					
						
						|  | sampling_rate = feature_extractor.sampling_rate | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if args.device is None: | 
					
						
						|  | args.device = 0 if torch.cuda.is_available() else -1 | 
					
						
						|  | asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def map_to_pred(batch): | 
					
						
						|  | prediction = asr( | 
					
						
						|  | batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | batch["prediction"] = prediction["text"] | 
					
						
						|  | batch["target"] = normalize_text(batch["sentence"]) | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | result = dataset.map(map_to_pred, remove_columns=dataset.column_names) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | log_results(result, args) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | parser = argparse.ArgumentParser() | 
					
						
						|  |  | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--dataset", | 
					
						
						|  | type=str, | 
					
						
						|  | required=True, | 
					
						
						|  | help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'`  for Common Voice" | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--device", | 
					
						
						|  | type=int, | 
					
						
						|  | default=None, | 
					
						
						|  | help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", | 
					
						
						|  | ) | 
					
						
						|  | args = parser.parse_args() | 
					
						
						|  |  | 
					
						
						|  | main(args) | 
					
						
						|  |  |