--- library_name: transformers base_model: seyonec/PubChem10M_SMILES_BPE_450k tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: manotham-finetuneClassfication-AlzheimerDrug results: [] --- # manotham-finetuneClassfication-AlzheimerDrug This model is a fine-tuned version of [seyonec/PubChem10M_SMILES_BPE_450k](https://huggingface.co/seyonec/PubChem10M_SMILES_BPE_450k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2675 - Accuracy: 0.9383 - Precision: 0.9398 - Recall: 0.9383 - F1: 0.9382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 75 | 0.2011 | 0.9408 | 0.9418 | 0.9408 | 0.9408 | | No log | 2.0 | 150 | 0.2087 | 0.9475 | 0.9475 | 0.9475 | 0.9475 | | No log | 3.0 | 225 | 0.2427 | 0.945 | 0.9457 | 0.945 | 0.9450 | | No log | 4.0 | 300 | 0.2497 | 0.9417 | 0.9424 | 0.9417 | 0.9416 | | No log | 5.0 | 375 | 0.2675 | 0.9383 | 0.9398 | 0.9383 | 0.9382 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1