Model save
Browse files
README.md
CHANGED
|
@@ -16,6 +16,29 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 16 |
# albert-base-v2-2-contract-sections-classification-v4-10
|
| 17 |
|
| 18 |
This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on an unknown dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
## Model description
|
| 21 |
|
|
@@ -42,6 +65,22 @@ The following hyperparameters were used during training:
|
|
| 42 |
- lr_scheduler_type: linear
|
| 43 |
- num_epochs: 10
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
### Framework versions
|
| 46 |
|
| 47 |
- Transformers 4.48.3
|
|
|
|
| 16 |
# albert-base-v2-2-contract-sections-classification-v4-10
|
| 17 |
|
| 18 |
This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on an unknown dataset.
|
| 19 |
+
It achieves the following results on the evaluation set:
|
| 20 |
+
- Loss: 0.8591
|
| 21 |
+
- Accuracy Evaluate: 0.7843
|
| 22 |
+
- Precision Evaluate: 0.8045
|
| 23 |
+
- Recall Evaluate: 0.7910
|
| 24 |
+
- F1 Evaluate: 0.7930
|
| 25 |
+
- Accuracy Sklearn: 0.7843
|
| 26 |
+
- Precision Sklearn: 0.7973
|
| 27 |
+
- Recall Sklearn: 0.7843
|
| 28 |
+
- F1 Sklearn: 0.7854
|
| 29 |
+
- Acuracia Rotulo Objeto: 0.8698
|
| 30 |
+
- Acuracia Rotulo Obrigacoes: 0.8670
|
| 31 |
+
- Acuracia Rotulo Valor: 0.6046
|
| 32 |
+
- Acuracia Rotulo Vigencia: 0.5984
|
| 33 |
+
- Acuracia Rotulo Rescisao: 0.7839
|
| 34 |
+
- Acuracia Rotulo Foro: 0.9
|
| 35 |
+
- Acuracia Rotulo Reajuste: 0.8185
|
| 36 |
+
- Acuracia Rotulo Fiscalizacao: 0.6656
|
| 37 |
+
- Acuracia Rotulo Publicacao: 0.8227
|
| 38 |
+
- Acuracia Rotulo Pagamento: 0.7717
|
| 39 |
+
- Acuracia Rotulo Casos Omissos: 0.8522
|
| 40 |
+
- Acuracia Rotulo Sancoes: 0.8716
|
| 41 |
+
- Acuracia Rotulo Dotacao Orcamentaria: 0.8571
|
| 42 |
|
| 43 |
## Model description
|
| 44 |
|
|
|
|
| 65 |
- lr_scheduler_type: linear
|
| 66 |
- num_epochs: 10
|
| 67 |
|
| 68 |
+
### Training results
|
| 69 |
+
|
| 70 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy Evaluate | Precision Evaluate | Recall Evaluate | F1 Evaluate | Accuracy Sklearn | Precision Sklearn | Recall Sklearn | F1 Sklearn | Acuracia Rotulo Objeto | Acuracia Rotulo Obrigacoes | Acuracia Rotulo Valor | Acuracia Rotulo Vigencia | Acuracia Rotulo Rescisao | Acuracia Rotulo Foro | Acuracia Rotulo Reajuste | Acuracia Rotulo Fiscalizacao | Acuracia Rotulo Publicacao | Acuracia Rotulo Pagamento | Acuracia Rotulo Casos Omissos | Acuracia Rotulo Sancoes | Acuracia Rotulo Dotacao Orcamentaria |
|
| 71 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-----------------:|:------------------:|:---------------:|:-----------:|:----------------:|:-----------------:|:--------------:|:----------:|:----------------------:|:--------------------------:|:---------------------:|:------------------------:|:------------------------:|:--------------------:|:------------------------:|:----------------------------:|:--------------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------------------------:|
|
| 72 |
+
| 1.7695 | 1.0 | 1000 | 1.9528 | 0.4447 | 0.6693 | 0.3931 | 0.3947 | 0.4447 | 0.6282 | 0.4447 | 0.4028 | 0.9029 | 0.8148 | 0.4069 | 0.0577 | 0.2521 | 0.8692 | 0.2064 | 0.0789 | 0.5025 | 0.2283 | 0.4335 | 0.3303 | 0.0275 |
|
| 73 |
+
| 1.2261 | 2.0 | 2000 | 1.6110 | 0.5755 | 0.6694 | 0.5569 | 0.5614 | 0.5755 | 0.6584 | 0.5755 | 0.5645 | 0.8244 | 0.8013 | 0.4097 | 0.3963 | 0.3601 | 0.9077 | 0.6299 | 0.1956 | 0.6059 | 0.6051 | 0.5714 | 0.6514 | 0.2802 |
|
| 74 |
+
| 0.9134 | 3.0 | 3000 | 1.3841 | 0.6538 | 0.7003 | 0.6524 | 0.6478 | 0.6538 | 0.6991 | 0.6538 | 0.6473 | 0.8161 | 0.8182 | 0.4585 | 0.4724 | 0.4377 | 0.9038 | 0.7794 | 0.3218 | 0.7438 | 0.7428 | 0.7635 | 0.7339 | 0.4890 |
|
| 75 |
+
| 0.7022 | 4.0 | 4000 | 1.2144 | 0.6935 | 0.7370 | 0.6945 | 0.6965 | 0.6935 | 0.7265 | 0.6935 | 0.6904 | 0.8244 | 0.8333 | 0.4470 | 0.5407 | 0.6842 | 0.8923 | 0.8043 | 0.3596 | 0.7488 | 0.7210 | 0.6453 | 0.8349 | 0.6923 |
|
| 76 |
+
| 0.5597 | 5.0 | 5000 | 1.0738 | 0.7288 | 0.7560 | 0.7406 | 0.7386 | 0.7288 | 0.7494 | 0.7288 | 0.7286 | 0.8574 | 0.7845 | 0.5358 | 0.5171 | 0.7147 | 0.9 | 0.8292 | 0.5110 | 0.7783 | 0.7355 | 0.8128 | 0.8716 | 0.7802 |
|
| 77 |
+
| 0.4429 | 6.0 | 6000 | 0.9868 | 0.7552 | 0.7772 | 0.7641 | 0.7626 | 0.7552 | 0.7731 | 0.7552 | 0.7556 | 0.8678 | 0.8350 | 0.5874 | 0.5328 | 0.7368 | 0.8846 | 0.8399 | 0.5584 | 0.8227 | 0.7790 | 0.8276 | 0.8807 | 0.7802 |
|
| 78 |
+
| 0.389 | 7.0 | 7000 | 0.9236 | 0.7615 | 0.7823 | 0.7701 | 0.7683 | 0.7615 | 0.7763 | 0.7615 | 0.7603 | 0.8616 | 0.8620 | 0.6017 | 0.5538 | 0.7479 | 0.8962 | 0.8185 | 0.5142 | 0.8227 | 0.7681 | 0.8473 | 0.8716 | 0.8462 |
|
| 79 |
+
| 0.3341 | 8.0 | 8000 | 0.8949 | 0.776 | 0.7961 | 0.7833 | 0.7845 | 0.776 | 0.7900 | 0.776 | 0.7771 | 0.8781 | 0.8519 | 0.6017 | 0.5722 | 0.7729 | 0.8962 | 0.8078 | 0.6656 | 0.8227 | 0.7536 | 0.8424 | 0.8716 | 0.8462 |
|
| 80 |
+
| 0.3099 | 9.0 | 9000 | 0.8650 | 0.7805 | 0.8039 | 0.7876 | 0.7905 | 0.7805 | 0.7956 | 0.7805 | 0.7819 | 0.8822 | 0.8552 | 0.6160 | 0.5748 | 0.7756 | 0.8962 | 0.8114 | 0.6593 | 0.8227 | 0.7754 | 0.8522 | 0.8716 | 0.8462 |
|
| 81 |
+
| 0.3016 | 10.0 | 10000 | 0.8591 | 0.7843 | 0.8045 | 0.7910 | 0.7930 | 0.7843 | 0.7973 | 0.7843 | 0.7854 | 0.8698 | 0.8670 | 0.6046 | 0.5984 | 0.7839 | 0.9 | 0.8185 | 0.6656 | 0.8227 | 0.7717 | 0.8522 | 0.8716 | 0.8571 |
|
| 82 |
+
|
| 83 |
+
|
| 84 |
### Framework versions
|
| 85 |
|
| 86 |
- Transformers 4.48.3
|