--- license: cc-by-4.0 library_name: scvi-tools tags: - biology - genomics - single-cell - model_cls_name:SCVI - scvi_version:0.20.0 - anndata_version:0.8.0 - modality:rna - annotated:False --- # Description scVI model trained on the full DLPFC Visium data (including the pilot samples). # Model properties Many model properties are in the model tags. Some more are listed below. **model_init_params**: ```json { "n_hidden": 128, "n_latent": 5, "n_layers": 1, "dropout_rate": 0.1, "dispersion": "gene", "gene_likelihood": "zinb", "latent_distribution": "normal" } ``` **model_setup_anndata_args**: ```json { "layer": "counts", "batch_key": "patient", "labels_key": null, "size_factor_key": null, "categorical_covariate_keys": [ "sample", "study" ], "continuous_covariate_keys": null } ``` **model_summary_stats**: | Summary Stat Key | Value | |--------------------------|--------| | n_batch | 13 | | n_cells | 166443 | | n_extra_categorical_covs | 2 | | n_extra_continuous_covs | 0 | | n_labels | 1 | | n_vars | 5000 | **model_data_registry**: | Registry Key | scvi-tools Location | |------------------------|--------------------------------------------| | X | adata.layers['counts'] | | batch | adata.obs['_scvi_batch'] | | extra_categorical_covs | adata.obsm['_scvi_extra_categorical_covs'] | | labels | adata.obs['_scvi_labels'] | **model_parent_module**: scvi.model **data_is_minified**: False # Training data This is an optional link to where the training data is stored if it is too large to host on the huggingface Model hub. Training data url: N/A # Training code This is an optional link to the code used to train the model. Training code url: N/A # References 1. Maynard, Kristen R., et al. "Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex." Nature neuroscience 24.3 (2021): 425-436. 2. Huuki-Myers, Louise A., et al. "Integrated single cell and unsupervised spatial transcriptomic analysis defines molecular anatomy of the human dorsolateral prefrontal cortex." BioRxiv (2023): 2023-02.