--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta_large-chunking_0728_v2 results: [] --- # roberta_large-chunking_0728_v2 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5270 - Precision: 0.6228 - Recall: 0.6467 - F1: 0.6345 - Accuracy: 0.8153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 125 | 0.5667 | 0.4931 | 0.5415 | 0.5162 | 0.7397 | | No log | 2.0 | 250 | 0.4839 | 0.5484 | 0.5894 | 0.5682 | 0.7874 | | No log | 3.0 | 375 | 0.4822 | 0.5997 | 0.6341 | 0.6164 | 0.8085 | | 0.4673 | 4.0 | 500 | 0.5117 | 0.6023 | 0.6373 | 0.6193 | 0.8120 | | 0.4673 | 5.0 | 625 | 0.5270 | 0.6228 | 0.6467 | 0.6345 | 0.8153 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1