--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: roberta_large-simple-chunk-conll2003_0819_v0 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.926378388345934 - name: Recall type: recall value: 0.9125794732061762 - name: F1 type: f1 value: 0.9194271595900438 - name: Accuracy type: accuracy value: 0.9727360116679926 --- # roberta_large-simple-chunk-conll2003_0819_v0 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0950 - Precision: 0.9264 - Recall: 0.9126 - F1: 0.9194 - Accuracy: 0.9727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1794 | 1.0 | 878 | 0.0934 | 0.9264 | 0.9217 | 0.9241 | 0.9725 | | 0.0837 | 2.0 | 1756 | 0.0859 | 0.9351 | 0.9266 | 0.9308 | 0.9749 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1