--- license: mit base_model: microsoft/deberta-v3-xsmall tags: - generated_from_trainer metrics: - recall - precision model-index: - name: deberta-v3-xsmall-finetuned-ner-1024 results: [] --- # deberta-v3-xsmall-finetuned-ner-1024 This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1799 - Recall: 0.0 - Precision: 0.0 - Fbeta Score: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0013 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Recall | Precision | Fbeta Score | |:-------------:|:-----:|:-----:|:---------------:|:------:|:---------:|:-----------:| | 0.1644 | 1.0 | 4496 | 0.1353 | 0.0 | 0.0 | nan | | 0.1576 | 2.0 | 8992 | 0.1371 | 0.0 | 0.0 | nan | | 0.1728 | 3.0 | 13488 | 0.2194 | 0.0 | 0.0 | nan | | 0.1422 | 4.0 | 17984 | 0.1799 | 0.0 | 0.0 | nan | ### Framework versions - Transformers 4.40.0 - Pytorch 2.1.2 - Datasets 2.19.0 - Tokenizers 0.19.1