masabhuq commited on
Commit
67e43c9
·
verified ·
1 Parent(s): d81c40a

Updated readme

Browse files
Files changed (1) hide show
  1. README.md +160 -171
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
  base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
3
  library_name: peft
4
- pipeline_tag: text-generation
5
  tags:
6
  - base_model:adapter:unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
7
  - lora
@@ -9,202 +9,191 @@ tags:
9
  - transformers
10
  - trl
11
  - unsloth
 
 
 
12
  ---
13
 
14
- # Model Card for Model ID
15
 
16
- <!-- Provide a quick summary of what the model is/does. -->
 
 
17
 
 
18
 
 
19
 
20
- ## Model Details
21
-
22
- ### Model Description
23
-
24
- <!-- Provide a longer summary of what this model is. -->
25
-
26
-
27
-
28
- - **Developed by:** [More Information Needed]
29
- - **Funded by [optional]:** [More Information Needed]
30
- - **Shared by [optional]:** [More Information Needed]
31
- - **Model type:** [More Information Needed]
32
- - **Language(s) (NLP):** [More Information Needed]
33
- - **License:** [More Information Needed]
34
- - **Finetuned from model [optional]:** [More Information Needed]
35
-
36
- ### Model Sources [optional]
37
-
38
- <!-- Provide the basic links for the model. -->
39
-
40
- - **Repository:** [More Information Needed]
41
- - **Paper [optional]:** [More Information Needed]
42
- - **Demo [optional]:** [More Information Needed]
43
-
44
- ## Uses
45
-
46
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
47
-
48
- ### Direct Use
49
-
50
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
51
-
52
- [More Information Needed]
53
-
54
- ### Downstream Use [optional]
55
-
56
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
57
-
58
- [More Information Needed]
59
-
60
- ### Out-of-Scope Use
61
-
62
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
63
-
64
- [More Information Needed]
65
-
66
- ## Bias, Risks, and Limitations
67
-
68
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
69
-
70
- [More Information Needed]
71
-
72
- ### Recommendations
73
-
74
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
75
-
76
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
77
-
78
- ## How to Get Started with the Model
79
-
80
- Use the code below to get started with the model.
81
-
82
- [More Information Needed]
83
-
84
- ## Training Details
85
-
86
- ### Training Data
87
-
88
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
89
-
90
- [More Information Needed]
91
-
92
- ### Training Procedure
93
-
94
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
95
-
96
- #### Preprocessing [optional]
97
-
98
- [More Information Needed]
99
-
100
-
101
- #### Training Hyperparameters
102
-
103
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
104
-
105
- #### Speeds, Sizes, Times [optional]
106
-
107
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
108
-
109
- [More Information Needed]
110
-
111
- ## Evaluation
112
-
113
- <!-- This section describes the evaluation protocols and provides the results. -->
114
-
115
- ### Testing Data, Factors & Metrics
116
-
117
- #### Testing Data
118
-
119
- <!-- This should link to a Dataset Card if possible. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Factors
124
-
125
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
126
-
127
- [More Information Needed]
128
-
129
- #### Metrics
130
-
131
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
132
-
133
- [More Information Needed]
134
-
135
- ### Results
136
-
137
- [More Information Needed]
138
-
139
- #### Summary
140
-
141
-
142
-
143
- ## Model Examination [optional]
144
-
145
- <!-- Relevant interpretability work for the model goes here -->
146
-
147
- [More Information Needed]
148
-
149
- ## Environmental Impact
150
-
151
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
152
-
153
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
154
-
155
- - **Hardware Type:** [More Information Needed]
156
- - **Hours used:** [More Information Needed]
157
- - **Cloud Provider:** [More Information Needed]
158
- - **Compute Region:** [More Information Needed]
159
- - **Carbon Emitted:** [More Information Needed]
160
-
161
- ## Technical Specifications [optional]
162
-
163
- ### Model Architecture and Objective
164
 
165
- [More Information Needed]
166
 
167
- ### Compute Infrastructure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168
 
169
- [More Information Needed]
 
170
 
171
- #### Hardware
 
 
172
 
173
- [More Information Needed]
174
 
175
- #### Software
176
 
177
- [More Information Needed]
178
 
179
- ## Citation [optional]
 
 
 
 
180
 
181
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
182
 
183
- **BibTeX:**
 
 
 
 
 
184
 
185
- [More Information Needed]
186
 
187
- **APA:**
188
 
189
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
190
 
191
- ## Glossary [optional]
192
 
193
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
194
 
195
- [More Information Needed]
196
 
197
- ## More Information [optional]
198
 
199
- [More Information Needed]
200
 
201
- ## Model Card Authors [optional]
202
 
203
- [More Information Needed]
 
 
 
 
 
 
 
 
 
204
 
205
- ## Model Card Contact
206
 
207
- [More Information Needed]
208
- ### Framework versions
 
 
209
 
210
- - PEFT 0.17.1
 
1
  ---
2
  base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
3
  library_name: peft
4
+ pipeline_tag: summarization
5
  tags:
6
  - base_model:adapter:unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
7
  - lora
 
9
  - transformers
10
  - trl
11
  - unsloth
12
+ license: apache-2.0
13
+ language:
14
+ - en
15
  ---
16
 
17
+ # STL Phone Summarizer
18
 
19
+ A conversational LLM for summarizing phone specifications into concise, appealing descriptions for e-commerce.
20
+ **Model:** LoRA fine-tuned Llama-3.2
21
+ **Repo:** [`masabhuq/stl_phone_summarizer`](https://huggingface.co/masabhuq/stl_phone_summarizer)
22
 
23
+ ---
24
 
25
+ ## Installation
26
 
27
+ ```bash
28
+ pip install unsloth torch
29
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ ---
32
 
33
+ ## Usage
34
+
35
+ ### 1. Load Model and Tokenizer
36
+
37
+ ```python
38
+ from unsloth import FastLanguageModel
39
+ from unsloth.chat_templates import get_chat_template
40
+
41
+ model, tokenizer = FastLanguageModel.from_pretrained(
42
+ "masabhuq/stl_phone_summarizer",
43
+ max_seq_length=2048,
44
+ dtype=None, # Auto-detect (bfloat16 if supported)
45
+ load_in_4bit=True, # 4-bit quantization for memory efficiency
46
+ )
47
+ FastLanguageModel.for_inference(model)
48
+ ```
49
+
50
+ ### 2. Apply the Chat Template
51
+
52
+ ```python
53
+ tokenizer = get_chat_template(
54
+ tokenizer,
55
+ chat_template="llama-3.2",
56
+ map_eos_token=True,
57
+ )
58
+ ```
59
+
60
+ ### 3. Prepare the Input
61
+
62
+ ```python
63
+ system_prompt = (
64
+ "You are an expert at summarizing phone specifications into short, appealing key descriptions for an e-commerce site. "
65
+ "Always output in exactly this format:\n"
66
+ "Display: [concise display summary]\n"
67
+ "Processor: [processor name]\n"
68
+ "Camera: [camera highlights]\n"
69
+ "Battery: [battery capacity and charging]\n"
70
+ "Others: [comma-separated unique features]. "
71
+ "Focus on desirable aspects like high refresh rates, zoom capabilities, fast charging, and unique features such as water resistance or special sensors. "
72
+ "Do not include complicated keyboards that don't make sense on their own. "
73
+ "Do not include words that are too technical to understand for someone who is not highly tech savvy. "
74
+ "Output should be within 280 characters. Don't include anything like IPDC or IP64 or any such features in the result. Words starting with IP are not to be considered display feature."
75
+ )
76
+
77
+ specs = "Build: Glass front (Gorilla Glass 5), silicone polymer back (eco leather), plastic frame\nWeight: 178 g ..."
78
+
79
+ prompt = [
80
+ {"role": "system", "content": system_prompt},
81
+ {"role": "user", "content": specs}
82
+ ]
83
+
84
+ formatted_prompt = tokenizer.apply_chat_template(
85
+ prompt,
86
+ tokenize=False,
87
+ add_generation_prompt=True,
88
+ )
89
+ ```
90
+
91
+ ### 4. Tokenize and Generate
92
+
93
+ ```python
94
+ import torch
95
+
96
+ inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cuda")
97
+ outputs = model.generate(
98
+ **inputs,
99
+ max_new_tokens=256,
100
+ do_sample=True,
101
+ temperature=0.7,
102
+ top_p=0.9,
103
+ )
104
+ ```
105
+
106
+ ### 5. Post-process Output
107
+
108
+ ```python
109
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=False)
110
+ # Extract the last paragraph and clean up
111
+ paragraphs = generated_text.strip().split("\n\n")
112
+ last_paragraph = paragraphs[-1]
113
+ clean_last_paragraph = last_paragraph.split("<|eot_id|>")[0].strip()
114
+ print(clean_last_paragraph)
115
+ ```
116
+ ### 6. Clean Up
117
+
118
+ Free GPU memory after inference:
119
+
120
+ ```python
121
+ model.cpu()
122
+ torch.cuda.empty_cache()
123
+ ```
124
 
125
+ ---
126
+ ## Hardware Requirements
127
 
128
+ - **GPU**: CUDA-compatible GPU with ~4-6GB VRAM for 4-bit inference.
129
+ - **CPU**: Optional for offloading model after inference (`model.cpu()`).
130
+ - **RAM**: ~8GB system RAM for smooth operation with dataset processing.
131
 
 
132
 
133
+ ---
134
 
135
+ ## Notes
136
 
137
+ - **Chat Template:** The tokenizer is uploaded without a chat template. Always apply the template at runtime as shown above.
138
+ - **System Prompt:** Adjust the system prompt for your use case.
139
+ - **Output Format:** The model is trained to output in a strict format for easy parsing.
140
+ - **Memory Management**: Use `model.cpu()` and `torch.cuda.empty_cache()` to free GPU memory after inference, especially on low-VRAM GPUs.
141
+ - **Inference Parameters**: Adjust `temperature` and `top_p` for more or less creative outputs, and `max_new_tokens` for longer or shorter summaries.
142
 
143
+ ---
144
+ ## Model Details
145
 
146
+ - **Base Model**: `unsloth/Llama-3.2-3B-Instruct-bnb-4bit`
147
+ - **Fine-Tuning**: LoRA adapters with rank `r=16`, targeting modules: `["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]`.
148
+ - **Quantization**: 4-bit for memory efficiency (~4-6GB VRAM).
149
+ - **Training Data**: A dataset of phone specifications (`specs`) paired with concise summaries (`output`) in the format shown above.
150
+ - **Training Setup**: Fine-tuned with `trl.SFTTrainer`, `train_on_responses_only` to focus on assistant responses, and Llama-3.2 chat template for single-turn interactions.
151
+ - **Output Constraints**: Summaries are limited to 280 characters, focusing on user-friendly features and avoiding technical terms like "IP68" or "IPDC".
152
 
153
+ ---
154
 
155
+ ## Dataset
156
 
157
+ The model was trained on a custom dataset (`specs_list.json`) containing pairs of detailed phone specifications and their corresponding summaries. Each entry includes:
158
+ - `specs`: Detailed technical specs (e.g., display size, chipset, camera details).
159
+ - `output`: A concise summary in the format:
160
+ ```
161
+ Display: [summary]
162
+ Processor: [name]
163
+ Camera: [highlights]
164
+ Battery: [capacity and charging]
165
+ Others: [features]
166
+ ```
167
+ The dataset emphasizes consumer-friendly features like high refresh rates, fast charging, and water resistance, avoiding overly technical terms.
168
 
169
+ ---
170
 
171
+ ## License
172
 
173
+ This model is licensed under the [Apache 2.0 License](LICENSE). See the `LICENSE` file in the repository for details.
174
 
175
+ ---
176
 
177
+ ## Citation
178
 
179
+ If you use this model, please cite the repository:
180
 
181
+ ```bibtex
182
+ @misc{stl_phone_summarizer,
183
+ author = {masabhuq},
184
+ title = {STL Phone Summarizer: A Fine-Tuned Llama-3.2 Model for Phone Specification Summaries},
185
+ year = {2025},
186
+ publisher = {Hugging Face},
187
+ howpublished = {\url{https://huggingface.co/masabhuq/stl_phone_summarizer}}
188
+ }
189
+ ```
190
+ ### 6. Clean Up
191
 
192
+ Free GPU memory after inference:
193
 
194
+ ```python
195
+ model.cpu()
196
+ torch.cuda.empty_cache()
197
+ ```
198
 
199
+ ---