mata01 commited on
Commit
b18ce52
·
verified ·
1 Parent(s): d4b3ad2

Add model card

Browse files
Files changed (1) hide show
  1. README.md +24 -6
README.md CHANGED
@@ -1,10 +1,28 @@
 
1
  ---
 
2
  tags:
3
- - model_hub_mixin
4
- - pytorch_model_hub_mixin
 
 
5
  ---
6
 
7
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
- - Code: [More Information Needed]
9
- - Paper: [More Information Needed]
10
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
  ---
3
+ license: apache-2.0
4
  tags:
5
+ - graph-neural-network
6
+ - rgcn
7
+ - edge-attention
8
+ - binary-classification
9
  ---
10
 
11
+ # BFS_EA_RGCN Model
12
+
13
+ This is a Graph Neural Network model combining Residual Graph Convolutional Networks (RGCN) and Edge Attention mechanisms, designed for binary classification of graphs (vulnerable vs. non-vulnerable).
14
+
15
+ - **Architecture**: Classifier with res_GCN (9 layers, 11 hidden units) and Edge_Attention (2 heads, 100 feature length)
16
+ - **Task**: Binary classification of software graphs
17
+ - **Dataset**: SG_Final_Train and SG_Final_Test (vulnerable and non-vulnerable graphs)
18
+ - **Input**: Graph node features (100-dim), edge features (100-dim), adjacency matrix
19
+ - **Output**: Binary label (0: non-vulnerable, 1: vulnerable)
20
+ - **Checkpoint**: Loaded from /kaggle/input/egat-peculiar-model/checkpoint_epoch_4.pt
21
+ - **Performance**:
22
+ - Test Accuracy: ~0.5959
23
+ - Precision: ~0.6345
24
+ - Recall: ~0.4623
25
+ - F1 Score: ~0.5349
26
+ - AUC: ~0.6222 (from exp-0 in notebook)
27
+
28
+ For more details, refer to the original training notebook or dataset documentation.