from sympy import false import test from transformers import PretrainedConfig # 定义了模型的超参数和配置 class CogniLiteConfig(PretrainedConfig): model_type = "minimind" def __init__( self, dropout: float = 0.0, bos_token_id: int = 1, eos_token_id: int = 2, hidden_act: str = 'silu', hidden_size: int = 768, intermediate_size: int = None, max_position_embeddings: int = 32768, num_attention_heads: int = 8, num_hidden_layers: int = 16, num_key_value_heads: int = 2, vocab_size: int = 6400, rms_norm_eps: float = 1e-05, rope_theta: int = 1000000.0, **kwargs ): super().__init__(**kwargs) # 各种模型超参数 self.dropout = dropout self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.hidden_act = hidden_act self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.max_position_embeddings = max_position_embeddings self.num_attention_heads = num_attention_heads self.num_hidden_layers = num_hidden_layers self.num_key_value_heads = num_key_value_heads self.vocab_size = vocab_size self.rms_norm_eps = rms_norm_eps self.rope_theta = rope_theta import math import torch from torch import nn from transformers.activations import ACT2FN from typing import Optional, Tuple, List, Union import torch.nn.functional as F # RMSNorm 层实现,Root Mean Square Layer Normalization class RMSNorm(torch.nn.Module): def __init__(self, dim: int, eps: float = 1e-5): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def _norm(self, x): # 归一化操作 return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): # 应用归一化和缩放 return self.weight * self._norm(x.float()).type_as(x) # 预计算旋转位置编码的频率 def precompute_freqs_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6): # 生成旋转位置编码所需的 cos 和 sin freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) t = torch.arange(end, device=freqs.device) freqs = torch.outer(t, freqs).float() freqs_cos = torch.cat([torch.cos(freqs), torch.cos(freqs)], dim=-1) freqs_sin = torch.cat([torch.sin(freqs), torch.sin(freqs)], dim=-1) return freqs_cos, freqs_sin # 应用旋转位置编码到 Q、K def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): def rotate_half(x): # 将向量一分为二,后一半取负并交换 return torch.cat((-x[..., x.shape[-1] // 2:], x[..., : x.shape[-1] // 2]), dim=-1) q_embed = (q * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(q) * sin.unsqueeze(unsqueeze_dim)) k_embed = (k * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(k) * sin.unsqueeze(unsqueeze_dim)) return q_embed, k_embed # 将 KV 头重复扩展到所有 attention head def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: """torch.repeat_interleave(x, dim=2, repeats=n_rep)""" bs, slen, num_key_value_heads, head_dim = x.shape if n_rep == 1: return x return ( x[:, :, :, None, :] .expand(bs, slen, num_key_value_heads, n_rep, head_dim) .reshape(bs, slen, num_key_value_heads * n_rep, head_dim) ) # 注意力机制实现 class Attention(nn.Module): def __init__(self, args: CogniLiteConfig): super().__init__() # 处理 KV 头数 self.num_key_value_heads = args.num_attention_heads if args.num_key_value_heads is None else args.num_key_value_heads assert args.num_attention_heads % self.num_key_value_heads == 0 self.n_local_heads = args.num_attention_heads self.n_local_kv_heads = self.num_key_value_heads self.n_rep = self.n_local_heads // self.n_local_kv_heads self.head_dim = args.hidden_size // args.num_attention_heads # QKV 投影 self.q_proj = nn.Linear(args.hidden_size, args.num_attention_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(args.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(args.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(args.num_attention_heads * self.head_dim, args.hidden_size, bias=False) self.attn_dropout = nn.Dropout(args.dropout) self.resid_dropout = nn.Dropout(args.dropout) self.dropout = args.dropout # 是否使用 flash attention self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') def forward(self, x: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], # cos 和 sin past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache=False, attention_mask: Optional[torch.Tensor] = None): bsz, seq_len, _ = x.shape # QKV 投影并 reshape xq, xk, xv = self.q_proj(x), self.k_proj(x), self.v_proj(x) xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim) xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) cos, sin = position_embeddings # 应用旋转位置编码 xq, xk = apply_rotary_pos_emb(xq, xk, cos[:seq_len], sin[:seq_len]) # 拼接 KV cache if past_key_value is not None: xk = torch.cat([past_key_value[0], xk], dim=1) xv = torch.cat([past_key_value[1], xv], dim=1) past_kv = (xk, xv) if use_cache else None # KV 头扩展到所有 attention head xq, xk, xv = ( xq.transpose(1, 2), repeat_kv(xk, self.n_rep).transpose(1, 2), repeat_kv(xv, self.n_rep).transpose(1, 2) ) # 使用 flash attention 或常规 attention if self.flash and seq_len != 1: dropout_p = self.dropout if self.training else 0.0 attn_mask = None if attention_mask is not None: attn_mask = attention_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_local_heads, seq_len, -1) attn_mask = attn_mask.bool() if attention_mask is not None else None output = F.scaled_dot_product_attention(xq, xk, xv, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=True) else: # 计算注意力分数 scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim) scores = scores + torch.triu( torch.full((seq_len, seq_len), float("-inf"), device=scores.device), diagonal=1 ).unsqueeze(0).unsqueeze(0) # 上三角 mask if attention_mask is not None: extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask = (1.0 - extended_attention_mask) * -1e9 scores = scores + extended_attention_mask scores = F.softmax(scores.float(), dim=-1).type_as(xq) scores = self.attn_dropout(scores) output = scores @ xv # 恢复 shape 并输出 output = output.transpose(1, 2).reshape(bsz, seq_len, -1) output = self.resid_dropout(self.o_proj(output)) return output, past_kv # 前馈网络实现 class FeedForward(nn.Module): def __init__(self, config: CogniLiteConfig): super().__init__() # 自动推断中间层维度 if config.intermediate_size is None: intermediate_size = int(config.hidden_size * 8 / 3) config.intermediate_size = 64 * ((intermediate_size + 64 - 1) // 64) self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) self.dropout = nn.Dropout(config.dropout) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): # SwiGLU 激活 return self.dropout(self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))) # Transformer Block class TransformerBlock(nn.Module): def __init__(self, layer_id: int, config: CogniLiteConfig): super().__init__() self.num_attention_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.head_dim = config.hidden_size // config.num_attention_heads self.self_attn = Attention(config) self.layer_id = layer_id self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.mlp = FeedForward(config) def forward(self, hidden_states, position_embeddings, past_key_value=None, use_cache=False, attention_mask=None): # 残差连接 + 注意力 + 前馈 residual = hidden_states hidden_states, present_key_value = self.self_attn( self.input_layernorm(hidden_states), position_embeddings, past_key_value, use_cache, attention_mask ) hidden_states += residual hidden_states = hidden_states + self.mlp(self.post_attention_layernorm(hidden_states)) return hidden_states, present_key_value # CogniLite模型主体 class CogniLiteModel(nn.Module): def __init__(self, config: CogniLiteConfig): super().__init__() self.config = config self.vocab_size, self.num_hidden_layers = config.vocab_size, config.num_hidden_layers self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) self.dropout = nn.Dropout(config.dropout) self.layers = nn.ModuleList([TransformerBlock(l, config) for l in range(self.num_hidden_layers)]) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) # 注册旋转位置编码的 cos/sin buffer freqs_cos, freqs_sin = precompute_freqs_cis(dim=config.hidden_size // config.num_attention_heads, end=config.max_position_embeddings, theta=config.rope_theta) self.register_buffer("freqs_cos", freqs_cos, persistent=False) self.register_buffer("freqs_sin", freqs_sin, persistent=False) def forward(self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, use_cache: bool = False, **kwargs): # input_ids: (batch, seq) _, seq_length = input_ids.shape past_key_values = past_key_values or [None] * len(self.layers) start_pos = past_key_values[0][0].shape[1] if past_key_values[0] is not None else 0 # 词嵌入 hidden_states = self.dropout(self.embed_tokens(input_ids)) # 取出对应位置的 cos/sin position_embeddings = ( self.freqs_cos[start_pos:start_pos + seq_length], self.freqs_sin[start_pos:start_pos + seq_length] ) presents = [] for layer_idx, (layer, past_key_value) in enumerate(zip(self.layers, past_key_values)): hidden_states, present = layer( hidden_states, position_embeddings, past_key_value=past_key_value, use_cache=use_cache, attention_mask=attention_mask ) presents.append(present) hidden_states = self.norm(hidden_states) return hidden_states, presents, 0 class CogniLiteForCausalLM(nn.Module): def __init__(self, config: CogniLiteConfig = None): super().__init__() self.config = config or CogniLiteConfig() self.model = CogniLiteModel(self.config) self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=False) # 权重共享 self.lm_head.weight = self.model.embed_tokens.weight def forward(self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, use_cache: bool = False, logits_to_keep: Union[int, torch.Tensor] = 0, **args): h, past_kvs, aux_loss = self.model( input_ids=input_ids, attention_mask=attention_mask, past_key_values=past_key_values, use_cache=use_cache, **args ) slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) and logits_to_keep > 0 else slice(None) logits = self.lm_head(h[:, slice_indices, :]) return { "last_hidden_state": h, "logits": logits, "aux_loss": aux_loss, "past_key_values": past_kvs } import safetensors.torch from transformers import AutoTokenizer def init_cognilite_model(): print("start loading CogniLite model...") # CogniLite Total parameters: 104M # structure: (hidden_size=768, num_hidden_layers=16) args = { "device": "cuda" if torch.cuda.is_available() else "cpu", "hidden_size": 768, "num_hidden_layers": 16, } tokenizer = AutoTokenizer.from_pretrained('./tokenizer/') state_dict = safetensors.torch.load_file("model.safetensors", device=args["device"]) model = CogniLiteForCausalLM(CogniLiteConfig()) # 加载模型参数 model.load_state_dict(state_dict, strict= True) print(f'模型参数量: {sum(p.numel() for p in model.parameters() if p.requires_grad)}') return model.eval().to(args["device"]), tokenizer import random import numpy as np def setup_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def communicate_with_model(random_seed): model, tokenizer = init_cognilite_model() print("随机种子是:", random_seed) setup_seed(random_seed) prompt= input("你: ") messages = [{"role": "user", "content": prompt}] new_prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) device = "cuda" if torch.cuda.is_available() else "cpu" inputs = tokenizer( new_prompt, return_tensors="pt", truncation=True ).to(device) # shape: [seq_len] input_ids = inputs["input_ids"][0] attention_mask = inputs.get("attention_mask", None) max_new_tokens = 128 eos_token_id = tokenizer.eos_token_id exit_reason = None token_list = [] print("模型 token 输出:[", end=' ') for _ in range(max_new_tokens): with torch.no_grad(): outputs = model( input_ids=input_ids.unsqueeze(0), attention_mask=attention_mask ) logits = outputs["logits"] next_token_id = torch.argmax(logits[0, -1], dim=-1).unsqueeze(0) if next_token_id.item() == eos_token_id: exit_reason = "EOS token detected" break token_list.append(next_token_id.item()) print(next_token_id.item(), end=' ', flush=True) # 拼接到输入 input_ids = torch.cat([input_ids, next_token_id], dim=0) # attention_mask 也要扩展 if attention_mask is not None: attention_mask = torch.cat([attention_mask[0], torch.ones(1, device=device, dtype=attention_mask.dtype)], dim=0).unsqueeze(0) print("]\n模型文字输出: " + tokenizer.decode(token_list, skip_special_tokens=False)) if exit_reason is None: print("\n 结束对话原因: 达到最大 Token 数量限制。") elif exit_reason == "EOS token detected": print("\n 结束对话原因: EOS token detected.") if __name__ == "__main__": random_type = input("请输入随机种子(整数):") try: random_seed = int(random_type) if random_seed <= 0: print("随机种子不能为非正整数,使用随机值") random_seed = random.randint(0, 10000) except ValueError: print("无效的随机种子,使用随机值") random_seed = random.randint(0, 10000) communicate_with_model(random_seed)