--- license: mit datasets: - matiss/Latvian-Twitter-Eater-Corpus-Sentiment language: - lv base_model: - AiLab-IMCS-UL/lvbert pipeline_tag: text-classification tags: - sentiment --- # Latvian Twitter Sentiment Analysis This is a BERT-base model trained on ~26,000 manually annotated tweets in Latvian from various sources for sentiment analysis. Labels:
0 -> Neutral;
1 -> Positive;
2 -> Negative. This sentiment analysis model has been integrated in [this HF Space](https://huggingface.co/spaces/matiss/Latvian-Twitter-Sentiment-Analysis). ## Example Pipeline ```python from transformers import pipeline model_path = "matiss/Latvian-Twitter-Sentiment-Analysis" sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path) sentiment_task("Man garšo pankūkas ar kotletēm") ``` ``` [{'label': 'Positive', 'score': 0.9032208919525146}] ``` ## Corpora Used for Training --------- * [Twitēdiens](https://huggingface.co/datasets/matiss/Latvian-Twitter-Eater-Corpus-Sentiment) - the Latvian Twitter Eater Corpus of ~5000 manually annotated food-related tweets. * [Pinnis](https://github.com/pmarcis/latvian-tweet-corpus) - ~ 7000 tweets from politicians and companies * [Peisenieks](https://github.com/FnTm/latvian-tweet-sentiment-corpus) - ~ 1000 general tweets with sentiment annotated by multiple annotators * [Vīksna](https://github.com/RinaldsViksna/sikzinu_analize) - ~ 4000 general tweets * [Nicemanis](https://github.com/nicemanis/LV-twitter-sentiment-corpus) - ~ 2000 general tweets * [Špats](https://github.com/gatis/om) - ~ 6000 general tweets Publications --------- If you use this corpus or scripts, please cite the following paper: Uga Sproģis and Matīss Rikters (2020). "[What Can We Learn From Almost a Decade of Food Tweets.](https://arxiv.org/abs/2007.05194)" In Proceedings of the 9th Conference Human Language Technologies - The Baltic Perspective ([Baltic HLT 2020](https://klc.vdu.lt/hlt/programme)) (2020). ```bibtex @inproceedings{SprogisRikters2020BalticHLT, author = {Sproģis, Uga and Rikters, Matīss}, booktitle={In Proceedings of the 9th Conference Human Language Technologies - The Baltic Perspective (Baltic HLT 2020)}, title = {{What Can We Learn From Almost a Decade of Food Tweets}}, address={Kaunas, Lithuania}, year = {2020} } ```