mattia-re-learn
commited on
Commit
·
06516b5
1
Parent(s):
09bf998
clone repo
Browse files- README.md +93 -0
- code/inference.py +101 -0
- code/requirements.txt +1 -0
- config.json +42 -0
- deploy_llava.ipynb +344 -0
- generation_config.json +8 -0
- pytorch_model.bin.index.json +414 -0
- special_tokens_map.json +24 -0
- tokenizer_config.json +35 -0
README.md
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
inference: false
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
<br>
|
| 6 |
+
<br>
|
| 7 |
+
|
| 8 |
+
# LLaVA Model Card
|
| 9 |
+
|
| 10 |
+
## Model details
|
| 11 |
+
This is a fork from origianl [liuhaotian/llava-v1.5-13b](https://huggingface.co/liuhaotian/llava-v1.5-13b). This repo added `code/inference.py` and `code/requirements.txt` to provide customize inference script and environment for SageMaker deployment.
|
| 12 |
+
|
| 13 |
+
**Model type:**
|
| 14 |
+
LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data.
|
| 15 |
+
It is an auto-regressive language model, based on the transformer architecture.
|
| 16 |
+
|
| 17 |
+
**Model date:**
|
| 18 |
+
LLaVA-v1.5-13B was trained in September 2023.
|
| 19 |
+
|
| 20 |
+
**Paper or resources for more information:**
|
| 21 |
+
https://llava-vl.github.io/
|
| 22 |
+
|
| 23 |
+
## How to Deploy on SageMaker
|
| 24 |
+
|
| 25 |
+
Following `deploy_llava.ipynb` (full tutorial [here](https://medium.com/@liltom.eth/deploy-llava-1-5-on-amazon-sagemaker-168b2efd2489)) , bundle llava model weights and code into a `model.tar.gz` and upload to S3:
|
| 26 |
+
|
| 27 |
+
```python
|
| 28 |
+
from sagemaker.s3 import S3Uploader
|
| 29 |
+
|
| 30 |
+
# upload model.tar.gz to s3
|
| 31 |
+
s3_model_uri = S3Uploader.upload(local_path="./model.tar.gz", desired_s3_uri=f"s3://{sess.default_bucket()}/llava-v1.5-13b")
|
| 32 |
+
|
| 33 |
+
print(f"model uploaded to: {s3_model_uri}")
|
| 34 |
+
```
|
| 35 |
+
Then use `HuggingfaceModel` to deploy our real-time inference endpoint on SageMaker:
|
| 36 |
+
|
| 37 |
+
```python
|
| 38 |
+
from sagemaker.huggingface.model import HuggingFaceModel
|
| 39 |
+
|
| 40 |
+
# create Hugging Face Model Class
|
| 41 |
+
huggingface_model = HuggingFaceModel(
|
| 42 |
+
model_data=s3_model_uri, # path to your model and script
|
| 43 |
+
role=role, # iam role with permissions to create an Endpoint
|
| 44 |
+
transformers_version="4.28.1", # transformers version used
|
| 45 |
+
pytorch_version="2.0.0", # pytorch version used
|
| 46 |
+
py_version='py310', # python version used
|
| 47 |
+
model_server_workers=1
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# deploy the endpoint endpoint
|
| 51 |
+
predictor = huggingface_model.deploy(
|
| 52 |
+
initial_instance_count=1,
|
| 53 |
+
instance_type="ml.g5.xlarge",
|
| 54 |
+
)
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
## Inference on SageMaker
|
| 58 |
+
Default `conv_mode` for llava-1.5 is setup as `llava_v1` to process `raw_prompt` into meaningful `prompt`. You can also setup `conv_mode` as `raw` to directly use `raw_prompt`.
|
| 59 |
+
```python
|
| 60 |
+
data = {
|
| 61 |
+
"image" : 'https://raw.githubusercontent.com/haotian-liu/LLaVA/main/images/llava_logo.png',
|
| 62 |
+
"question" : "Describe the image and color details.",
|
| 63 |
+
# "max_new_tokens" : 1024,
|
| 64 |
+
# "temperature" : 0.2,
|
| 65 |
+
# "conv_mode" : "llava_v1"
|
| 66 |
+
}
|
| 67 |
+
output = predictor.predict(data)
|
| 68 |
+
print(output)
|
| 69 |
+
```
|
| 70 |
+
Or use [SageMakerRuntime](https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-runtime/client/invoke_endpoint.html#invoke-endpoint) to setup endpoint invoking client.
|
| 71 |
+
|
| 72 |
+
## License
|
| 73 |
+
Llama 2 is licensed under the LLAMA 2 Community License,
|
| 74 |
+
Copyright (c) Meta Platforms, Inc. All Rights Reserved.
|
| 75 |
+
|
| 76 |
+
**Where to send questions or comments about the model:**
|
| 77 |
+
https://github.com/haotian-liu/LLaVA/issues
|
| 78 |
+
|
| 79 |
+
## Intended use
|
| 80 |
+
**Primary intended uses:**
|
| 81 |
+
The primary use of LLaVA is research on large multimodal models and chatbots.
|
| 82 |
+
|
| 83 |
+
**Primary intended users:**
|
| 84 |
+
The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
|
| 85 |
+
|
| 86 |
+
## Training dataset
|
| 87 |
+
- 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
|
| 88 |
+
- 158K GPT-generated multimodal instruction-following data.
|
| 89 |
+
- 450K academic-task-oriented VQA data mixture.
|
| 90 |
+
- 40K ShareGPT data.
|
| 91 |
+
|
| 92 |
+
## Evaluation dataset
|
| 93 |
+
A collection of 12 benchmarks, including 5 academic VQA benchmarks and 7 recent benchmarks specifically proposed for instruction-following LMMs.
|
code/inference.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from io import BytesIO
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import AutoTokenizer
|
| 6 |
+
|
| 7 |
+
from llava.model import LlavaLlamaForCausalLM
|
| 8 |
+
from llava.utils import disable_torch_init
|
| 9 |
+
from llava.mm_utils import tokenizer_image_token, KeywordsStoppingCriteria
|
| 10 |
+
|
| 11 |
+
from llava.conversation import conv_templates, SeparatorStyle
|
| 12 |
+
from llava.constants import (
|
| 13 |
+
IMAGE_TOKEN_INDEX,
|
| 14 |
+
DEFAULT_IMAGE_TOKEN,
|
| 15 |
+
DEFAULT_IM_START_TOKEN,
|
| 16 |
+
DEFAULT_IM_END_TOKEN,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def model_fn(model_dir):
|
| 21 |
+
kwargs = {"device_map": "auto"}
|
| 22 |
+
kwargs["torch_dtype"] = torch.float16
|
| 23 |
+
model = LlavaLlamaForCausalLM.from_pretrained(
|
| 24 |
+
model_dir, low_cpu_mem_usage=True, **kwargs
|
| 25 |
+
)
|
| 26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False)
|
| 27 |
+
|
| 28 |
+
vision_tower = model.get_vision_tower()
|
| 29 |
+
if not vision_tower.is_loaded:
|
| 30 |
+
vision_tower.load_model()
|
| 31 |
+
vision_tower.to(device="cuda", dtype=torch.float16)
|
| 32 |
+
image_processor = vision_tower.image_processor
|
| 33 |
+
return model, tokenizer, image_processor
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def predict_fn(data, model_and_tokenizer):
|
| 37 |
+
# unpack model and tokenizer
|
| 38 |
+
model, tokenizer, image_processor = model_and_tokenizer
|
| 39 |
+
|
| 40 |
+
# get prompt & parameters
|
| 41 |
+
image_file = data.pop("image", data)
|
| 42 |
+
raw_prompt = data.pop("question", data)
|
| 43 |
+
|
| 44 |
+
max_new_tokens = data.pop("max_new_tokens", 1024)
|
| 45 |
+
temperature = data.pop("temperature", 0.2)
|
| 46 |
+
conv_mode = data.pop("conv_mode", "llava_v1")
|
| 47 |
+
|
| 48 |
+
if conv_mode == "raw":
|
| 49 |
+
# use raw_prompt as prompt
|
| 50 |
+
prompt = raw_prompt
|
| 51 |
+
stop_str = "###"
|
| 52 |
+
else:
|
| 53 |
+
conv = conv_templates[conv_mode].copy()
|
| 54 |
+
roles = conv.roles
|
| 55 |
+
inp = f"{roles[0]}: {raw_prompt}"
|
| 56 |
+
inp = (
|
| 57 |
+
DEFAULT_IM_START_TOKEN
|
| 58 |
+
+ DEFAULT_IMAGE_TOKEN
|
| 59 |
+
+ DEFAULT_IM_END_TOKEN
|
| 60 |
+
+ "\n"
|
| 61 |
+
+ inp
|
| 62 |
+
)
|
| 63 |
+
conv.append_message(conv.roles[0], inp)
|
| 64 |
+
conv.append_message(conv.roles[1], None)
|
| 65 |
+
prompt = conv.get_prompt()
|
| 66 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
| 67 |
+
|
| 68 |
+
if image_file.startswith("http") or image_file.startswith("https"):
|
| 69 |
+
response = requests.get(image_file)
|
| 70 |
+
image = Image.open(BytesIO(response.content)).convert("RGB")
|
| 71 |
+
else:
|
| 72 |
+
image = Image.open(image_file).convert("RGB")
|
| 73 |
+
|
| 74 |
+
disable_torch_init()
|
| 75 |
+
image_tensor = (
|
| 76 |
+
image_processor.preprocess(image, return_tensors="pt")["pixel_values"]
|
| 77 |
+
.half()
|
| 78 |
+
.cuda()
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
keywords = [stop_str]
|
| 82 |
+
input_ids = (
|
| 83 |
+
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
|
| 84 |
+
.unsqueeze(0)
|
| 85 |
+
.cuda()
|
| 86 |
+
)
|
| 87 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
| 88 |
+
with torch.inference_mode():
|
| 89 |
+
output_ids = model.generate(
|
| 90 |
+
input_ids,
|
| 91 |
+
images=image_tensor,
|
| 92 |
+
do_sample=True,
|
| 93 |
+
temperature=temperature,
|
| 94 |
+
max_new_tokens=max_new_tokens,
|
| 95 |
+
use_cache=True,
|
| 96 |
+
stopping_criteria=[stopping_criteria],
|
| 97 |
+
)
|
| 98 |
+
outputs = tokenizer.decode(
|
| 99 |
+
output_ids[0, input_ids.shape[1] :], skip_special_tokens=True
|
| 100 |
+
).strip()
|
| 101 |
+
return outputs
|
code/requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
llava @ git+https://github.com/haotian-liu/[email protected]
|
config.json
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "llava-v1.5-13b",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"LlavaLlamaForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"bos_token_id": 1,
|
| 7 |
+
"eos_token_id": 2,
|
| 8 |
+
"freeze_mm_mlp_adapter": false,
|
| 9 |
+
"freeze_mm_vision_resampler": false,
|
| 10 |
+
"hidden_act": "silu",
|
| 11 |
+
"hidden_size": 5120,
|
| 12 |
+
"image_aspect_ratio": "pad",
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 13824,
|
| 15 |
+
"max_length": 4096,
|
| 16 |
+
"max_position_embeddings": 4096,
|
| 17 |
+
"mm_hidden_size": 1024,
|
| 18 |
+
"mm_projector_type": "mlp2x_gelu",
|
| 19 |
+
"mm_resampler_type": null,
|
| 20 |
+
"mm_use_im_patch_token": false,
|
| 21 |
+
"mm_use_im_start_end": false,
|
| 22 |
+
"mm_vision_select_feature": "patch",
|
| 23 |
+
"mm_vision_select_layer": -2,
|
| 24 |
+
"mm_vision_tower": "openai/clip-vit-large-patch14-336",
|
| 25 |
+
"model_type": "llava",
|
| 26 |
+
"num_attention_heads": 40,
|
| 27 |
+
"num_hidden_layers": 40,
|
| 28 |
+
"num_key_value_heads": 40,
|
| 29 |
+
"pad_token_id": 0,
|
| 30 |
+
"pretraining_tp": 1,
|
| 31 |
+
"rms_norm_eps": 1e-05,
|
| 32 |
+
"rope_scaling": null,
|
| 33 |
+
"tie_word_embeddings": false,
|
| 34 |
+
"torch_dtype": "float16",
|
| 35 |
+
"transformers_version": "4.31.0",
|
| 36 |
+
"tune_mm_mlp_adapter": false,
|
| 37 |
+
"tune_mm_vision_resampler": false,
|
| 38 |
+
"unfreeze_mm_vision_tower": false,
|
| 39 |
+
"use_cache": true,
|
| 40 |
+
"use_mm_proj": true,
|
| 41 |
+
"vocab_size": 32000
|
| 42 |
+
}
|
deploy_llava.ipynb
ADDED
|
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# Deploy LLaVA on Amazon SageMaker\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"Amazon SageMaker is a popular platform for running AI models, and models on huggingface deploy [Hugging Face Transformers](https://github.com/huggingface/transformers) using [Amazon SageMaker](https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html) and the [Amazon SageMaker Python SDK](https://sagemaker.readthedocs.io/en/stable/).\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"Install sagemaker sdk:"
|
| 14 |
+
]
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"cell_type": "code",
|
| 18 |
+
"execution_count": null,
|
| 19 |
+
"metadata": {},
|
| 20 |
+
"outputs": [],
|
| 21 |
+
"source": [
|
| 22 |
+
"!pip install sagemaker --upgrade\n",
|
| 23 |
+
"!pip install -r code/requirements.txt"
|
| 24 |
+
]
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"cell_type": "markdown",
|
| 28 |
+
"metadata": {},
|
| 29 |
+
"source": [
|
| 30 |
+
"Bundle llava model weights and code into a `model.tar.gz`:"
|
| 31 |
+
]
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"cell_type": "code",
|
| 35 |
+
"execution_count": 3,
|
| 36 |
+
"metadata": {},
|
| 37 |
+
"outputs": [],
|
| 38 |
+
"source": [
|
| 39 |
+
"# Create SageMaker model.tar.gz artifact\n",
|
| 40 |
+
"!tar -cf model.tar.gz --use-compress-program=pigz *"
|
| 41 |
+
]
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"cell_type": "markdown",
|
| 45 |
+
"metadata": {},
|
| 46 |
+
"source": [
|
| 47 |
+
"After we created the `model.tar.gz` archive we can upload it to Amazon S3. We will use the `sagemaker` SDK to upload the model to our sagemaker session bucket.\n",
|
| 48 |
+
"\n",
|
| 49 |
+
"Initialize sagemaker session first:"
|
| 50 |
+
]
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"cell_type": "code",
|
| 54 |
+
"execution_count": null,
|
| 55 |
+
"metadata": {},
|
| 56 |
+
"outputs": [],
|
| 57 |
+
"source": [
|
| 58 |
+
"import sagemaker\n",
|
| 59 |
+
"import boto3\n",
|
| 60 |
+
"sess = sagemaker.Session()\n",
|
| 61 |
+
"# sagemaker session bucket -> used for uploading data, models and logs\n",
|
| 62 |
+
"# sagemaker will automatically create this bucket if it not exists\n",
|
| 63 |
+
"sagemaker_session_bucket=None\n",
|
| 64 |
+
"if sagemaker_session_bucket is None and sess is not None:\n",
|
| 65 |
+
" # set to default bucket if a bucket name is not given\n",
|
| 66 |
+
" sagemaker_session_bucket = sess.default_bucket()\n",
|
| 67 |
+
"\n",
|
| 68 |
+
"try:\n",
|
| 69 |
+
" role = sagemaker.get_execution_role()\n",
|
| 70 |
+
"except ValueError:\n",
|
| 71 |
+
" iam = boto3.client('iam')\n",
|
| 72 |
+
" # setup your own rolename in sagemaker\n",
|
| 73 |
+
" role = iam.get_role(RoleName='AmazonSageMaker-ExecutionRole-20231008T201275')['Role']['Arn']\n",
|
| 74 |
+
"\n",
|
| 75 |
+
"sess = sagemaker.Session(default_bucket=sagemaker_session_bucket)\n",
|
| 76 |
+
"\n",
|
| 77 |
+
"print(f\"sagemaker role arn: {role}\")\n",
|
| 78 |
+
"print(f\"sagemaker bucket: {sess.default_bucket()}\")\n",
|
| 79 |
+
"print(f\"sagemaker session region: {sess.boto_region_name}\")"
|
| 80 |
+
]
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"cell_type": "markdown",
|
| 84 |
+
"metadata": {},
|
| 85 |
+
"source": [
|
| 86 |
+
"Upload the `model.tar.gz` to our sagemaker session bucket:"
|
| 87 |
+
]
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"cell_type": "code",
|
| 91 |
+
"execution_count": null,
|
| 92 |
+
"metadata": {},
|
| 93 |
+
"outputs": [],
|
| 94 |
+
"source": [
|
| 95 |
+
"from sagemaker.s3 import S3Uploader\n",
|
| 96 |
+
"\n",
|
| 97 |
+
"# upload model.tar.gz to s3\n",
|
| 98 |
+
"s3_model_uri = S3Uploader.upload(local_path=\"./model.tar.gz\", desired_s3_uri=f\"s3://{sess.default_bucket()}/llava-v1.5-13b\")\n",
|
| 99 |
+
"\n",
|
| 100 |
+
"print(f\"model uploaded to: {s3_model_uri}\")"
|
| 101 |
+
]
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"cell_type": "markdown",
|
| 105 |
+
"metadata": {},
|
| 106 |
+
"source": [
|
| 107 |
+
"We will use `HuggingfaceModel` to create our real-time inference endpoint:"
|
| 108 |
+
]
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"cell_type": "code",
|
| 112 |
+
"execution_count": 7,
|
| 113 |
+
"metadata": {},
|
| 114 |
+
"outputs": [
|
| 115 |
+
{
|
| 116 |
+
"name": "stdout",
|
| 117 |
+
"output_type": "stream",
|
| 118 |
+
"text": [
|
| 119 |
+
"sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
|
| 120 |
+
"sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n",
|
| 121 |
+
"sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
|
| 122 |
+
"sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n",
|
| 123 |
+
"---------------!"
|
| 124 |
+
]
|
| 125 |
+
}
|
| 126 |
+
],
|
| 127 |
+
"source": [
|
| 128 |
+
"\n",
|
| 129 |
+
"from sagemaker.huggingface.model import HuggingFaceModel\n",
|
| 130 |
+
"\n",
|
| 131 |
+
"# create Hugging Face Model Class\n",
|
| 132 |
+
"huggingface_model = HuggingFaceModel(\n",
|
| 133 |
+
" model_data=s3_model_uri, # path to your model and script\n",
|
| 134 |
+
" role=role, # iam role with permissions to create an Endpoint\n",
|
| 135 |
+
" transformers_version=\"4.28.1\", # transformers version used\n",
|
| 136 |
+
" pytorch_version=\"2.0.0\", # pytorch version used\n",
|
| 137 |
+
" py_version='py310', # python version used\n",
|
| 138 |
+
" model_server_workers=1\n",
|
| 139 |
+
")\n",
|
| 140 |
+
"\n",
|
| 141 |
+
"# deploy the endpoint endpoint\n",
|
| 142 |
+
"predictor = huggingface_model.deploy(\n",
|
| 143 |
+
" initial_instance_count=1,\n",
|
| 144 |
+
" instance_type=\"ml.g5.xlarge\",\n",
|
| 145 |
+
" # container_startup_health_check_timeout=600, # increase timeout for large models\n",
|
| 146 |
+
" # model_data_download_timeout=600, # increase timeout for large models\n",
|
| 147 |
+
")"
|
| 148 |
+
]
|
| 149 |
+
},
|
| 150 |
+
{
|
| 151 |
+
"cell_type": "markdown",
|
| 152 |
+
"metadata": {},
|
| 153 |
+
"source": [
|
| 154 |
+
"The `.deploy()` returns an `HuggingFacePredictor` object which can be used to request inference using the `.predict()` method. Our endpoint expects a `json` with at least `image` and `question` key."
|
| 155 |
+
]
|
| 156 |
+
},
|
| 157 |
+
{
|
| 158 |
+
"cell_type": "code",
|
| 159 |
+
"execution_count": 9,
|
| 160 |
+
"metadata": {},
|
| 161 |
+
"outputs": [
|
| 162 |
+
{
|
| 163 |
+
"name": "stdout",
|
| 164 |
+
"output_type": "stream",
|
| 165 |
+
"text": [
|
| 166 |
+
"The image is a black and white photograph of a man standing in front of a building. The man is wearing a suit and tie, and he appears to be looking at the camera. The building in the background is large and has many windows. The overall atmosphere of the image is formal and professional.\n"
|
| 167 |
+
]
|
| 168 |
+
}
|
| 169 |
+
],
|
| 170 |
+
"source": [
|
| 171 |
+
"data = {\n",
|
| 172 |
+
" \"image\" : 'https://raw.githubusercontent.com/haotian-liu/LLaVA/main/images/llava_logo.png', \n",
|
| 173 |
+
" \"question\" : \"Describe the image and color details.\",\n",
|
| 174 |
+
" # \"max_new_tokens\" : 1024,\n",
|
| 175 |
+
" # \"temperature\" : 0.2,\n",
|
| 176 |
+
" # \"stop_str\" : \"###\"\n",
|
| 177 |
+
"}\n",
|
| 178 |
+
"\n",
|
| 179 |
+
"# request\n",
|
| 180 |
+
"output = predictor.predict(data)\n",
|
| 181 |
+
"print(output)"
|
| 182 |
+
]
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"cell_type": "markdown",
|
| 186 |
+
"metadata": {},
|
| 187 |
+
"source": [
|
| 188 |
+
"To run inference with `llava` special token:"
|
| 189 |
+
]
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"cell_type": "code",
|
| 193 |
+
"execution_count": 11,
|
| 194 |
+
"metadata": {},
|
| 195 |
+
"outputs": [
|
| 196 |
+
{
|
| 197 |
+
"name": "stdout",
|
| 198 |
+
"output_type": "stream",
|
| 199 |
+
"text": [
|
| 200 |
+
"The image features a red toy animal, possibly a horse or a donkey, with a pair of glasses on its face. The toy is made of plastic and has a fire-like appearance, giving it a unique and eye-catching look. The red color of the toy and the glasses on its face create a striking contrast against the background, making it the main focus of the image.\n"
|
| 201 |
+
]
|
| 202 |
+
}
|
| 203 |
+
],
|
| 204 |
+
"source": [
|
| 205 |
+
"from llava.conversation import conv_templates, SeparatorStyle\n",
|
| 206 |
+
"from llava.constants import (\n",
|
| 207 |
+
"DEFAULT_IMAGE_TOKEN,\n",
|
| 208 |
+
"DEFAULT_IM_START_TOKEN,\n",
|
| 209 |
+
"DEFAULT_IM_END_TOKEN,\n",
|
| 210 |
+
")\n",
|
| 211 |
+
"def get_prompt(raw_prompt):\n",
|
| 212 |
+
" conv_mode = \"llava_v1\"\n",
|
| 213 |
+
" conv = conv_templates[conv_mode].copy()\n",
|
| 214 |
+
" roles = conv.roles\n",
|
| 215 |
+
" inp = f\"{roles[0]}: {raw_prompt}\"\n",
|
| 216 |
+
" inp = (\n",
|
| 217 |
+
" DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + \"\\n\" + inp\n",
|
| 218 |
+
" )\n",
|
| 219 |
+
" conv.append_message(conv.roles[0], inp)\n",
|
| 220 |
+
" conv.append_message(conv.roles[1], None)\n",
|
| 221 |
+
" prompt = conv.get_prompt()\n",
|
| 222 |
+
" stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2\n",
|
| 223 |
+
" return prompt, stop_str\n",
|
| 224 |
+
"\n",
|
| 225 |
+
"raw_prompt = \"Describe the image and color details.\"\n",
|
| 226 |
+
"prompt, stop_str = get_prompt(raw_prompt)\n",
|
| 227 |
+
"image_path = \"https://raw.githubusercontent.com/haotian-liu/LLaVA/main/images/llava_logo.png\"\n",
|
| 228 |
+
"data = {\"image\" : image_path, \"question\" : prompt, \"stop_str\" : stop_str}\n",
|
| 229 |
+
"output = predictor.predict(data)\n",
|
| 230 |
+
"print(output)"
|
| 231 |
+
]
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"cell_type": "markdown",
|
| 235 |
+
"metadata": {},
|
| 236 |
+
"source": [
|
| 237 |
+
"The inference ` predictor` can also be initilized like with your deployed `endpoint_name` :"
|
| 238 |
+
]
|
| 239 |
+
},
|
| 240 |
+
{
|
| 241 |
+
"cell_type": "code",
|
| 242 |
+
"execution_count": 14,
|
| 243 |
+
"metadata": {},
|
| 244 |
+
"outputs": [
|
| 245 |
+
{
|
| 246 |
+
"name": "stdout",
|
| 247 |
+
"output_type": "stream",
|
| 248 |
+
"text": [
|
| 249 |
+
"sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
|
| 250 |
+
"sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n",
|
| 251 |
+
"sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
|
| 252 |
+
"sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n"
|
| 253 |
+
]
|
| 254 |
+
},
|
| 255 |
+
{
|
| 256 |
+
"name": "stderr",
|
| 257 |
+
"output_type": "stream",
|
| 258 |
+
"text": [
|
| 259 |
+
"Couldn't call 'get_role' to get Role ARN from role name arn:aws:iam::297308036828:root to get Role path.\n"
|
| 260 |
+
]
|
| 261 |
+
}
|
| 262 |
+
],
|
| 263 |
+
"source": [
|
| 264 |
+
"import sagemaker\n",
|
| 265 |
+
"import boto3\n",
|
| 266 |
+
"sess = sagemaker.Session()\n",
|
| 267 |
+
"try:\n",
|
| 268 |
+
" role = sagemaker.get_execution_role()\n",
|
| 269 |
+
"except ValueError:\n",
|
| 270 |
+
" iam = boto3.client('iam')\n",
|
| 271 |
+
" # setup your own rolename in sagemaker\n",
|
| 272 |
+
" role = iam.get_role(RoleName='AmazonSageMaker-ExecutionRole-20231008T201275')['Role']['Arn']\n",
|
| 273 |
+
"\n",
|
| 274 |
+
"from sagemaker.huggingface.model import HuggingFacePredictor\n",
|
| 275 |
+
"# initial the endpoint predictor\n",
|
| 276 |
+
"predictor2 = HuggingFacePredictor(\n",
|
| 277 |
+
" endpoint_name=\"huggingface-pytorch-inference-2023-10-19-05-57-37-847\",\n",
|
| 278 |
+
" sagemaker_session=sess\n",
|
| 279 |
+
")"
|
| 280 |
+
]
|
| 281 |
+
},
|
| 282 |
+
{
|
| 283 |
+
"cell_type": "code",
|
| 284 |
+
"execution_count": 15,
|
| 285 |
+
"metadata": {},
|
| 286 |
+
"outputs": [
|
| 287 |
+
{
|
| 288 |
+
"name": "stdout",
|
| 289 |
+
"output_type": "stream",
|
| 290 |
+
"text": [
|
| 291 |
+
"The image features a small toy animal, resembling a horse or a donkey, with a red and orange color scheme. The toy has a pair of glasses on its face, giving it a unique and quirky appearance. The toy is standing on a gray surface, which provides a contrasting background for the vibrant colors of the toy. The combination of red, orange, and gray creates a visually striking scene.\n"
|
| 292 |
+
]
|
| 293 |
+
}
|
| 294 |
+
],
|
| 295 |
+
"source": [
|
| 296 |
+
"raw_prompt = \"Describe the image and color details.\"\n",
|
| 297 |
+
"prompt, stop_str = get_prompt(raw_prompt)\n",
|
| 298 |
+
"image_path = \"https://raw.githubusercontent.com/haotian-liu/LLaVA/main/images/llava_logo.png\"\n",
|
| 299 |
+
"data = {\"image\" : image_path, \"question\" : prompt, \"stop_str\" : stop_str}\n",
|
| 300 |
+
"output = predictor2.predict(data)\n",
|
| 301 |
+
"print(output)"
|
| 302 |
+
]
|
| 303 |
+
},
|
| 304 |
+
{
|
| 305 |
+
"cell_type": "markdown",
|
| 306 |
+
"metadata": {},
|
| 307 |
+
"source": [
|
| 308 |
+
"To clean up, we can delete the model and endpoint by `delete_endpoint()`or using sagemaker console:"
|
| 309 |
+
]
|
| 310 |
+
},
|
| 311 |
+
{
|
| 312 |
+
"cell_type": "code",
|
| 313 |
+
"execution_count": 16,
|
| 314 |
+
"metadata": {},
|
| 315 |
+
"outputs": [],
|
| 316 |
+
"source": [
|
| 317 |
+
"# delete sagemaker endpoint\n",
|
| 318 |
+
"predictor.delete_endpoint()"
|
| 319 |
+
]
|
| 320 |
+
}
|
| 321 |
+
],
|
| 322 |
+
"metadata": {
|
| 323 |
+
"kernelspec": {
|
| 324 |
+
"display_name": "llava",
|
| 325 |
+
"language": "python",
|
| 326 |
+
"name": "python3"
|
| 327 |
+
},
|
| 328 |
+
"language_info": {
|
| 329 |
+
"codemirror_mode": {
|
| 330 |
+
"name": "ipython",
|
| 331 |
+
"version": 3
|
| 332 |
+
},
|
| 333 |
+
"file_extension": ".py",
|
| 334 |
+
"mimetype": "text/x-python",
|
| 335 |
+
"name": "python",
|
| 336 |
+
"nbconvert_exporter": "python",
|
| 337 |
+
"pygments_lexer": "ipython3",
|
| 338 |
+
"version": "3.10.13"
|
| 339 |
+
},
|
| 340 |
+
"orig_nbformat": 4
|
| 341 |
+
},
|
| 342 |
+
"nbformat": 4,
|
| 343 |
+
"nbformat_minor": 2
|
| 344 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"max_length": 4096,
|
| 6 |
+
"pad_token_id": 0,
|
| 7 |
+
"transformers_version": "4.31.0"
|
| 8 |
+
}
|
pytorch_model.bin.index.json
ADDED
|
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 26094673920
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "pytorch_model-00003-of-00003.bin",
|
| 7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 16 |
+
"model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 17 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 18 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 19 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 20 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 21 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 22 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 23 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 24 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 25 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 26 |
+
"model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 27 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 28 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 29 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 30 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 31 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 32 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 33 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 34 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 35 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 36 |
+
"model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 37 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 38 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 39 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 40 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 41 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 42 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 43 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 44 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 45 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 46 |
+
"model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 47 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 48 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 49 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 50 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 51 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 52 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 53 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 54 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 55 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 56 |
+
"model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 57 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 58 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 59 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 60 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 61 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 62 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 63 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 64 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 65 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 66 |
+
"model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 67 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 68 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 69 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 70 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 71 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 72 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 73 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 74 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 75 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 76 |
+
"model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 77 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 78 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 79 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 80 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 81 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 82 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 83 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 84 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 85 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 86 |
+
"model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 87 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 88 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 89 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 90 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 91 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 92 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 93 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 94 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 95 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 96 |
+
"model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 97 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 98 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 99 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 100 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 101 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 102 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 103 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 104 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 105 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 106 |
+
"model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 107 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 108 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 109 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 110 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 111 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 112 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 113 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 114 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 115 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 116 |
+
"model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 117 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 118 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 119 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 120 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 121 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 122 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 123 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 124 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 125 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 126 |
+
"model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 127 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 128 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 129 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 130 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 131 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 132 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 133 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 134 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 135 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 136 |
+
"model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 137 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 138 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 139 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 140 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 141 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 142 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 143 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 144 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 145 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 146 |
+
"model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 147 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 148 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 149 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 150 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 151 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 152 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 153 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 154 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 155 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 156 |
+
"model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 157 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 158 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 159 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 160 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 161 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 162 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 163 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 164 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 165 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 166 |
+
"model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 167 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 168 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 169 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 170 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 171 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 172 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 173 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 174 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 175 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 176 |
+
"model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 177 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 178 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 179 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 180 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 181 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 182 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 183 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 184 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 185 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 186 |
+
"model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 187 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 188 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 189 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 190 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 191 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 192 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 193 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 194 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 195 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 196 |
+
"model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 197 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 198 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 199 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 200 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 201 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 202 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 203 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 204 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 205 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 206 |
+
"model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 207 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 208 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 209 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 210 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 211 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 212 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 213 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 214 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 215 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 216 |
+
"model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 217 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 218 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 219 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 220 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 221 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 222 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 223 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 224 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 225 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 226 |
+
"model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 227 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 228 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 229 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 230 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 231 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 232 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 233 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 234 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 235 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 236 |
+
"model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 237 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 238 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 239 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 240 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 241 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 242 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 243 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 244 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 245 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 246 |
+
"model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 247 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 248 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 249 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 250 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 251 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 252 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 253 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 254 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 255 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 256 |
+
"model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 257 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 258 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 259 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 260 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 261 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 262 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 263 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 264 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 265 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 266 |
+
"model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 267 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 268 |
+
"model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 269 |
+
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 270 |
+
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 271 |
+
"model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 272 |
+
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 273 |
+
"model.layers.32.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 274 |
+
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 275 |
+
"model.layers.32.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 276 |
+
"model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 277 |
+
"model.layers.32.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 278 |
+
"model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 279 |
+
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 280 |
+
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 281 |
+
"model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 282 |
+
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 283 |
+
"model.layers.33.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 284 |
+
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 285 |
+
"model.layers.33.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 286 |
+
"model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 287 |
+
"model.layers.33.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 288 |
+
"model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 289 |
+
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 290 |
+
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 291 |
+
"model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 292 |
+
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 293 |
+
"model.layers.34.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 294 |
+
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 295 |
+
"model.layers.34.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 296 |
+
"model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 297 |
+
"model.layers.34.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 298 |
+
"model.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 299 |
+
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 300 |
+
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 301 |
+
"model.layers.35.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 302 |
+
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 303 |
+
"model.layers.35.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 304 |
+
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 305 |
+
"model.layers.35.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 306 |
+
"model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 307 |
+
"model.layers.35.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 308 |
+
"model.layers.36.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 309 |
+
"model.layers.36.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 310 |
+
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 311 |
+
"model.layers.36.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 312 |
+
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 313 |
+
"model.layers.36.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 314 |
+
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 315 |
+
"model.layers.36.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 316 |
+
"model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 317 |
+
"model.layers.36.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 318 |
+
"model.layers.37.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 319 |
+
"model.layers.37.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 320 |
+
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 321 |
+
"model.layers.37.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 322 |
+
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 323 |
+
"model.layers.37.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 324 |
+
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 325 |
+
"model.layers.37.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 326 |
+
"model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 327 |
+
"model.layers.37.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 328 |
+
"model.layers.38.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 329 |
+
"model.layers.38.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 330 |
+
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 331 |
+
"model.layers.38.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 332 |
+
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 333 |
+
"model.layers.38.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 334 |
+
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 335 |
+
"model.layers.38.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 336 |
+
"model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 337 |
+
"model.layers.38.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 338 |
+
"model.layers.39.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 339 |
+
"model.layers.39.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 340 |
+
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 341 |
+
"model.layers.39.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 342 |
+
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 343 |
+
"model.layers.39.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 344 |
+
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 345 |
+
"model.layers.39.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 346 |
+
"model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 347 |
+
"model.layers.39.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 348 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 349 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 350 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 351 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 352 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 353 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 354 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 355 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 356 |
+
"model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 357 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 358 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 359 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 360 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 361 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 362 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 363 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 364 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 365 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 366 |
+
"model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 367 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 368 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 369 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 370 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 371 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 372 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 373 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 374 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 375 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 376 |
+
"model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 377 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 378 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 379 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 380 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 381 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 382 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 383 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 384 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 385 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 386 |
+
"model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 387 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 388 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 389 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 390 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 391 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 392 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 393 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 394 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 395 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 396 |
+
"model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 397 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 398 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 399 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 400 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 401 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 402 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 403 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 404 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 405 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 406 |
+
"model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 407 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 408 |
+
"model.mm_projector.0.bias": "pytorch_model-00003-of-00003.bin",
|
| 409 |
+
"model.mm_projector.0.weight": "pytorch_model-00003-of-00003.bin",
|
| 410 |
+
"model.mm_projector.2.bias": "pytorch_model-00003-of-00003.bin",
|
| 411 |
+
"model.mm_projector.2.weight": "pytorch_model-00003-of-00003.bin",
|
| 412 |
+
"model.norm.weight": "pytorch_model-00003-of-00003.bin"
|
| 413 |
+
}
|
| 414 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "<unk>",
|
| 17 |
+
"unk_token": {
|
| 18 |
+
"content": "<unk>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"bos_token": {
|
| 5 |
+
"__type": "AddedToken",
|
| 6 |
+
"content": "<s>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"clean_up_tokenization_spaces": false,
|
| 13 |
+
"eos_token": {
|
| 14 |
+
"__type": "AddedToken",
|
| 15 |
+
"content": "</s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false
|
| 20 |
+
},
|
| 21 |
+
"legacy": false,
|
| 22 |
+
"model_max_length": 2048,
|
| 23 |
+
"pad_token": null,
|
| 24 |
+
"padding_side": "right",
|
| 25 |
+
"sp_model_kwargs": {},
|
| 26 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 27 |
+
"unk_token": {
|
| 28 |
+
"__type": "AddedToken",
|
| 29 |
+
"content": "<unk>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false
|
| 34 |
+
}
|
| 35 |
+
}
|