--- library_name: peft license: llama3 base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0 tags: - axolotl - generated_from_trainer model-index: - name: 8f86abcd-d2d3-42d1-aa84-5f1b4826d67a results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2d9305be56ee3266_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_input: input field_instruction: instruct field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true eval_batch_size: 8 eval_max_new_tokens: 128 eval_steps: 1000 evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: mbort1/8f86abcd-d2d3-42d1-aa84-5f1b4826d67a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 local_rank: null logging_steps: 50 lora_alpha: 16 lora_dropout: 0.1 lora_fan_in_fan_out: false lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 1000 micro_batch_size: 8 mlflow_experiment_name: /ephemeral/tmp/2d9305be56ee3266_train_data.json model_type: AutoModelForCausalLM optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: false sample_packing: false save_steps: 200 saves_per_epoch: null seed: 21544 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d5bbe9a2-8759-4461-bdf6-45ec949b3f7d wandb_project: mbort1 wandb_run: your_name wandb_runid: d5bbe9a2-8759-4461-bdf6-45ec949b3f7d warmup_steps: 100 weight_decay: 0.01 xformers_attention: true ```

# 8f86abcd-d2d3-42d1-aa84-5f1b4826d67a This model is a fine-tuned version of [WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0](https://huggingface.co/WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 21544 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 1.1311 | | 0.8293 | 0.2702 | 1000 | 0.8305 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1