File size: 1,992 Bytes
1ef838e a94fb95 1ef838e 6c5379d 1ef838e 6c5379d 1ef838e 6c5379d 1ef838e 6c5379d 1ef838e dba92d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: transformers
license: apache-2.0
base_model: SenseTime/deformable-detr
tags:
- generated_from_trainer
datasets:
- Voxel51/fisheye8k
model-index:
- name: fisheye8k_SenseTime_deformable-detr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fisheye8k_SenseTime_deformable-detr
This model is a fine-tuned version of [SenseTime/deformable-detr](https://huggingface.co/SenseTime/deformable-detr) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2335
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 0
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 36
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.8943 | 1.0 | 5288 | 1.5330 |
| 0.7865 | 2.0 | 10576 | 1.4108 |
| 0.7238 | 3.0 | 15864 | 1.2660 |
| 0.6657 | 4.0 | 21152 | 1.2084 |
| 0.646 | 5.0 | 26440 | 1.2666 |
| 0.6269 | 6.0 | 31728 | 1.2555 |
| 0.6049 | 7.0 | 37016 | 1.2350 |
| 0.5894 | 8.0 | 42304 | 1.2940 |
| 0.5484 | 9.0 | 47592 | 1.2335 |
### Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
Mcity Data Engine: https://arxiv.org/abs/2504.21614 |