Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,683 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-4.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
---
|
4 |
+
|
5 |
+
<div align="center">
|
6 |
+
<h1 style="text-align: center; color: green;"> Accepted in ACL Main 2025 </h1>
|
7 |
+
</div>
|
8 |
+
|
9 |
+
<div align="center">
|
10 |
+
<table>
|
11 |
+
<tr>
|
12 |
+
<td>
|
13 |
+
<a href="https://arxiv.org/pdf/2503.10995">
|
14 |
+
<img src="https://img.shields.io/badge/arXiv-Read_Paper-blue?style=for-the-badge&logo=arxiv" alt="Read Paper"/>
|
15 |
+
</a>
|
16 |
+
</td>
|
17 |
+
<td>
|
18 |
+
<a href="https://huggingface.co/md-nishat-008/TigerLLM-1B-it">
|
19 |
+
<img src="https://img.shields.io/badge/HuggingFace-TigerLLM--1B--it-orange?style=for-the-badge&logo=huggingface" alt="TigerLLM-1B-it"/>
|
20 |
+
</a>
|
21 |
+
</td>
|
22 |
+
<td>
|
23 |
+
<a href="mailto:[email protected]">
|
24 |
+
<img src="https://img.shields.io/badge/Email-Contact_Us-blue?style=for-the-badge&logo=gmail" alt="Contact Us"/>
|
25 |
+
</a>
|
26 |
+
</td>
|
27 |
+
</tr>
|
28 |
+
</table>
|
29 |
+
</div>
|
30 |
+
|
31 |
+
<div align="center">
|
32 |
+
|
33 |
+
<h1 style="text-align: center; color: green;">TigerLLM - A Family of Bangla Large Language Models</h1>
|
34 |
+
|
35 |
+
<h3 style="text-align: center; color: green;">Nishat Raihan, Marcos Zampieri</h3>
|
36 |
+
<h4 style="text-align: center; color: green;">George Mason University, VA, USA</h4>
|
37 |
+
<p style="text-align: center; color: red;">[email protected]</p>
|
38 |
+
|
39 |
+
</div>
|
40 |
+
|
41 |
+
|
42 |
+
---
|
43 |
+
If you find our work helpful, please consider citing our paper:
|
44 |
+
|
45 |
+
```bibtex
|
46 |
+
@inproceedings{raihan-zampieri-2025-tigerllm,
|
47 |
+
title = "{T}iger{LLM} - A Family of {B}angla Large Language Models",
|
48 |
+
author = "Raihan, Nishat and
|
49 |
+
Zampieri, Marcos",
|
50 |
+
editor = "Che, Wanxiang and
|
51 |
+
Nabende, Joyce and
|
52 |
+
Shutova, Ekaterina and
|
53 |
+
Pilehvar, Mohammad Taher",
|
54 |
+
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
|
55 |
+
month = jul,
|
56 |
+
year = "2025",
|
57 |
+
address = "Vienna, Austria",
|
58 |
+
publisher = "Association for Computational Linguistics",
|
59 |
+
url = "https://aclanthology.org/2025.acl-short.69/",
|
60 |
+
doi = "10.18653/v1/2025.acl-short.69",
|
61 |
+
pages = "887--896",
|
62 |
+
ISBN = "979-8-89176-252-7"
|
63 |
+
}
|
64 |
+
```
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
<hr>
|
71 |
+
|
72 |
+
<h2 style="text-align: center; color: green;">Abstract</h2>
|
73 |
+
<p>
|
74 |
+
The development of Large Language Models (LLMs) remains heavily skewed towards English and a few other high-resource languages. This linguistic disparity is particularly evident for Bangla – the 5th most spoken language. A few initiatives attempted to create open-source Bangla LLMs with performance still behind high-resource languages and limited reproducibility. To address this gap, we introduce <span style="color: red;">TigerLLM</span> – a family of Bangla LLMs. Our results demonstrate that these models surpass all open-source alternatives and also outperform larger proprietary models like GPT3.5 across standard benchmarks, establishing TigerLLM as the new baseline for future Bangla language modeling.
|
75 |
+
</p>
|
76 |
+
|
77 |
+
<hr>
|
78 |
+
|
79 |
+
<h2 style="text-align: center; color: green;">1. Introduction</h2>
|
80 |
+
<p>
|
81 |
+
LLMs have fundamentally transformed NLP by achieving exceptional performance across a wide range of tasks. However, their advancements have predominantly benefited high-resource languages. Despite having about 237 million native Bangla speakers, Bangla remains underserved in modern NLP due to the lack of high-quality training data and reproducible methodologies.
|
82 |
+
</p>
|
83 |
+
|
84 |
+
<h3 style="text-align: center; color: green;">1.1 Limitations of Bangla LLM Initiatives</h3>
|
85 |
+
<p>
|
86 |
+
Recent efforts (e.g., titu-Gemma, titu-LLaMA, Bangla-LLaMA, G2B) suffer from low reproducibility, suboptimal performance, and poor documentation. Many rely on translated synthetic datasets, leading to compromised instruction quality.
|
87 |
+
</p>
|
88 |
+
|
89 |
+
<table>
|
90 |
+
<thead>
|
91 |
+
<tr>
|
92 |
+
<th style="color: green; text-align: center;">Base-LLM</th>
|
93 |
+
<th style="color: green; text-align: center;">Size</th>
|
94 |
+
<th style="color: green; text-align: center;">Pretraining<br>(pt)</th>
|
95 |
+
<th style="color: green; text-align: center;">Corpora</th>
|
96 |
+
<th style="color: green; text-align: center;">Finetuning<br>(ft)</th>
|
97 |
+
<th style="color: green; text-align: center;">Finetune Dataset</th>
|
98 |
+
<th style="color: green; text-align: center;">Paper/Report?</th>
|
99 |
+
<th style="color: green; text-align: center;">Reproducibility?</th>
|
100 |
+
</tr>
|
101 |
+
</thead>
|
102 |
+
<tbody>
|
103 |
+
<tr>
|
104 |
+
<td>titu-Gemma (Gemma-2)</td>
|
105 |
+
<td>2B</td>
|
106 |
+
<td>4.4B</td>
|
107 |
+
<td>✕</td>
|
108 |
+
<td>✕</td>
|
109 |
+
<td>✕</td>
|
110 |
+
<td>✕</td>
|
111 |
+
<td>✕</td>
|
112 |
+
</tr>
|
113 |
+
<tr>
|
114 |
+
<td>titu-LLaMA (LLaMA-3.1)</td>
|
115 |
+
<td>3B</td>
|
116 |
+
<td>37B</td>
|
117 |
+
<td>✕</td>
|
118 |
+
<td>✕</td>
|
119 |
+
<td>✕</td>
|
120 |
+
<td>✕</td>
|
121 |
+
<td>✕</td>
|
122 |
+
</tr>
|
123 |
+
<tr>
|
124 |
+
<td>Bangla-LLaMA (LLaMA-3.2)</td>
|
125 |
+
<td>3B</td>
|
126 |
+
<td>✓</td>
|
127 |
+
<td>✕</td>
|
128 |
+
<td>172K<br>(Orca-translated)</td>
|
129 |
+
<td>✓</td>
|
130 |
+
<td>✕</td>
|
131 |
+
<td>✕</td>
|
132 |
+
</tr>
|
133 |
+
<tr>
|
134 |
+
<td>G2B (Gemma-2)</td>
|
135 |
+
<td>9B</td>
|
136 |
+
<td>✕</td>
|
137 |
+
<td>✕</td>
|
138 |
+
<td>145K<br>(Alpaca-translated)</td>
|
139 |
+
<td>✕</td>
|
140 |
+
<td>✕</td>
|
141 |
+
<td>✕</td>
|
142 |
+
</tr>
|
143 |
+
<tr>
|
144 |
+
<td>Bangla-LLaMA (LLaMA-2)</td>
|
145 |
+
<td>13B</td>
|
146 |
+
<td>✓</td>
|
147 |
+
<td>✕</td>
|
148 |
+
<td>145K<br>(Alpaca-translated)</td>
|
149 |
+
<td>✕</td>
|
150 |
+
<td>✕</td>
|
151 |
+
<td>✕</td>
|
152 |
+
</tr>
|
153 |
+
<tr>
|
154 |
+
<td><span style="color:red;">TigerLLM (LLaMA-3.2)</span></td>
|
155 |
+
<td>1B</td>
|
156 |
+
<td>10M</td>
|
157 |
+
<td>Bangla-TextBook</td>
|
158 |
+
<td>100K<br>(Bangla-Instruct)</td>
|
159 |
+
<td>✓</td>
|
160 |
+
<td>✓</td>
|
161 |
+
</tr>
|
162 |
+
<tr>
|
163 |
+
<td><span style="color:red;">TigerLLM (Gemma-2)</span></td>
|
164 |
+
<td>9B</td>
|
165 |
+
<td>10M</td>
|
166 |
+
<td>Bangla-TextBook</td>
|
167 |
+
<td>100K<br>(Bangla-Instruct)</td>
|
168 |
+
<td>✓</td>
|
169 |
+
<td>✓</td>
|
170 |
+
</tr>
|
171 |
+
</tbody>
|
172 |
+
</table>
|
173 |
+
|
174 |
+
<h3 style="text-align: center; color: green;">1.2 Contributions</h3>
|
175 |
+
<ul>
|
176 |
+
<li><span style="color: red;">Bangla-TextBook Corpus</span>: A 10M-token corpus of high-quality educational texts.</li>
|
177 |
+
<li><span style="color: red;">Bangla-Instruct Dataset</span>: 100K native Bangla instruction-response pairs generated via self-instruct and advanced teacher models.</li>
|
178 |
+
<li><span style="color: red;">TigerLLM Models</span>: A family of models (1B and 9B parameters) that achieve significant performance improvements over existing alternatives.</li>
|
179 |
+
</ul>
|
180 |
+
|
181 |
+
<hr>
|
182 |
+
|
183 |
+
<h2 style="text-align: center; color: green;">2. Bangla-TextBook Corpus</h2>
|
184 |
+
<p>
|
185 |
+
The <span style="color: red;">Bangla-TextBook</span> corpus is compiled exclusively from open-source educational materials provided by the National Curriculum and Textbook Board of Bangladesh. It aggregates texts from <span style="color: red;">163 textbooks</span> for Grades 6–12, yielding <span style="color: red;">9,897,623 tokens</span> and <span style="color: red;">697,903 sentences</span>, capturing authentic academic language use.
|
186 |
+
</p>
|
187 |
+
|
188 |
+
<hr>
|
189 |
+
|
190 |
+
<h2 style="text-align: center; color: green;">3. Bangla-Instruct</h2>
|
191 |
+
<p>
|
192 |
+
To overcome previous limitations, the <span style="color: red;">Bangla-Instruct</span> dataset contains <span style="color: red;">100,000 instruction-response pairs</span> generated using a self-instruct framework. Key steps include:
|
193 |
+
</p>
|
194 |
+
<ol>
|
195 |
+
<li><span style="color: red;">Seed Task Generation</span>: 500 tasks curated by 50 volunteers from diverse academic backgrounds.</li>
|
196 |
+
<li>New instruction generation using GPT-4 and Claude-3.5-Sonnet.</li>
|
197 |
+
<li>Task identification for appropriate response formatting.</li>
|
198 |
+
<li>Multi-stage filtering to ensure linguistic quality and cultural sensitivity.</li>
|
199 |
+
</ol>
|
200 |
+
<p>
|
201 |
+
Refer to <span style="color: red;">Figure 1</span> for the Bangla-Instruct generation pipeline.
|
202 |
+
</p>
|
203 |
+
|
204 |
+
<hr>
|
205 |
+
|
206 |
+
<h2 style="text-align: center; color: green;">4. TigerLLM</h2>
|
207 |
+
<p>
|
208 |
+
TigerLLM is built by leveraging the strengths of both the Bangla-TextBook corpus and the Bangla-Instruct dataset. The training process involves:
|
209 |
+
</p>
|
210 |
+
<ul>
|
211 |
+
<li><span style="color: red;">Continual Pretraining</span> on the Bangla-TextBook corpus to capture language-specific nuances.</li>
|
212 |
+
<li><span style="color: red;">Model Distillation</span> via full fine-tuning (without LoRA) using Flash Attention, ensuring efficient convergence.</li>
|
213 |
+
</ul>
|
214 |
+
<p>
|
215 |
+
For details on the training pipeline, please see <span style="color: red;">Figure 2</span> (overall pipeline), <span style="color: red;">Figure 3</span> (pretraining loss), and <span style="color: red;">Figure 4</span> (finetuning loss).
|
216 |
+
</p>
|
217 |
+
|
218 |
+
<hr>
|
219 |
+
|
220 |
+
<h2 style="text-align: center; color: green;">5. Evaluation</h2>
|
221 |
+
<p>
|
222 |
+
TigerLLM is evaluated on multiple Bangla-specific benchmarks including:
|
223 |
+
</p>
|
224 |
+
<ul>
|
225 |
+
<li>MMLU-bn</li>
|
226 |
+
<li>PangBench-bn</li>
|
227 |
+
<li>BanglaQuaD</li>
|
228 |
+
<li>mHumanEval-bn</li>
|
229 |
+
<li>BEnQA</li>
|
230 |
+
<li>BanglaRQA</li>
|
231 |
+
</ul>
|
232 |
+
<p>
|
233 |
+
The performance comparison is detailed in <span style="color: red;">Table 2</span> below:
|
234 |
+
</p>
|
235 |
+
|
236 |
+
<table>
|
237 |
+
<thead>
|
238 |
+
<tr>
|
239 |
+
<th style="color: green; text-align: center;">Model</th>
|
240 |
+
<th style="color: green; text-align: center;">MMLU-bn</th>
|
241 |
+
<th style="color: green; text-align: center;">PangBench-bn</th>
|
242 |
+
<th style="color: green; text-align: center;">BanglaQuaD</th>
|
243 |
+
<th style="color: green; text-align: center;">mHumanEval-bn</th>
|
244 |
+
<th style="color: green; text-align: center;">BEnQA</th>
|
245 |
+
<th style="color: green; text-align: center;">BanglaRQA</th>
|
246 |
+
</tr>
|
247 |
+
</thead>
|
248 |
+
<tbody>
|
249 |
+
<tr>
|
250 |
+
<td>GPT3.5</td>
|
251 |
+
<td>0.55</td>
|
252 |
+
<td>0.55</td>
|
253 |
+
<td>0.50</td>
|
254 |
+
<td>0.56</td>
|
255 |
+
<td>0.50</td>
|
256 |
+
<td>0.49</td>
|
257 |
+
</tr>
|
258 |
+
<tr>
|
259 |
+
<td>Gemini-Flash1.5</td>
|
260 |
+
<td>0.66</td>
|
261 |
+
<td>0.57</td>
|
262 |
+
<td>0.62</td>
|
263 |
+
<td>0.58</td>
|
264 |
+
<td>0.56</td>
|
265 |
+
<td>0.61</td>
|
266 |
+
</tr>
|
267 |
+
<tr>
|
268 |
+
<td>GPT4o-mini</td>
|
269 |
+
<td>0.67</td>
|
270 |
+
<td>0.62</td>
|
271 |
+
<td>0.65</td>
|
272 |
+
<td>0.56</td>
|
273 |
+
<td>0.60</td>
|
274 |
+
<td>0.60</td>
|
275 |
+
</tr>
|
276 |
+
<tr>
|
277 |
+
<td>LLaMA3.2 (11B)</td>
|
278 |
+
<td>0.22</td>
|
279 |
+
<td>0.19</td>
|
280 |
+
<td>0.21</td>
|
281 |
+
<td>0.15</td>
|
282 |
+
<td>0.18</td>
|
283 |
+
<td>0.20</td>
|
284 |
+
</tr>
|
285 |
+
<tr>
|
286 |
+
<td>Gemma 2 (27B)</td>
|
287 |
+
<td>0.35</td>
|
288 |
+
<td>0.51</td>
|
289 |
+
<td>0.43</td>
|
290 |
+
<td>0.64</td>
|
291 |
+
<td>0.50</td>
|
292 |
+
<td>0.56</td>
|
293 |
+
</tr>
|
294 |
+
<tr>
|
295 |
+
<td>Pangea (7B)</td>
|
296 |
+
<td>0.18</td>
|
297 |
+
<td>0.15</td>
|
298 |
+
<td>0.17</td>
|
299 |
+
<td>0.10</td>
|
300 |
+
<td>0.14</td>
|
301 |
+
<td>0.16</td>
|
302 |
+
</tr>
|
303 |
+
<tr>
|
304 |
+
<td><span style="color:red;">Titu-LLM</span></td>
|
305 |
+
<td>0.06</td>
|
306 |
+
<td>0.19</td>
|
307 |
+
<td>0.08</td>
|
308 |
+
<td>0.02</td>
|
309 |
+
<td>0.17</td>
|
310 |
+
<td>0.21</td>
|
311 |
+
</tr>
|
312 |
+
<tr>
|
313 |
+
<td><span style="color:red;">Bong-LLaMA</span></td>
|
314 |
+
<td>0.05</td>
|
315 |
+
<td>0.12</td>
|
316 |
+
<td>0.08</td>
|
317 |
+
<td>0.02</td>
|
318 |
+
<td>0.15</td>
|
319 |
+
<td>0.13</td>
|
320 |
+
</tr>
|
321 |
+
<tr>
|
322 |
+
<td><span style="color:red;">Bangla-LLaMA</span></td>
|
323 |
+
<td>0.02</td>
|
324 |
+
<td>0.08</td>
|
325 |
+
<td>0.05</td>
|
326 |
+
<td>0.10</td>
|
327 |
+
<td>0.11</td>
|
328 |
+
<td>0.09</td>
|
329 |
+
</tr>
|
330 |
+
<tr>
|
331 |
+
<td><span style="color:red;">Bangla-Gemma</span></td>
|
332 |
+
<td>0.18</td>
|
333 |
+
<td>0.15</td>
|
334 |
+
<td>0.12</td>
|
335 |
+
<td>0.10</td>
|
336 |
+
<td>0.22</td>
|
337 |
+
<td>0.19</td>
|
338 |
+
</tr>
|
339 |
+
<tr>
|
340 |
+
<td><span style="color:red;">TigerLLM (1B)</span></td>
|
341 |
+
<td>0.61</td>
|
342 |
+
<td>0.55</td>
|
343 |
+
<td>0.68</td>
|
344 |
+
<td>0.61</td>
|
345 |
+
<td>0.59</td>
|
346 |
+
<td>0.62</td>
|
347 |
+
</tr>
|
348 |
+
<tr>
|
349 |
+
<td><span style="color:red;">TigerLLM (9B)</span></td>
|
350 |
+
<td>0.72</td>
|
351 |
+
<td>0.68</td>
|
352 |
+
<td>0.70</td>
|
353 |
+
<td>0.63</td>
|
354 |
+
<td>0.65</td>
|
355 |
+
<td>0.68</td>
|
356 |
+
</tr>
|
357 |
+
</tbody>
|
358 |
+
</table>
|
359 |
+
|
360 |
+
<hr>
|
361 |
+
|
362 |
+
<h2 style="text-align: center; color: green;">6. Conclusion and Future Work</h2>
|
363 |
+
<p>
|
364 |
+
This paper presents <span style="color: red;">TigerLLM</span>, a family of Bangla language models that set new benchmarks by leveraging two high-quality datasets: the Bangla-TextBook corpus and the Bangla-Instruct dataset. Future work will involve qualitative analyses, expanding the corpus, scaling model sizes, and developing more sophisticated evaluation metrics.
|
365 |
+
</p>
|
366 |
+
|
367 |
+
<hr>
|
368 |
+
|
369 |
+
<h2 style="text-align: center; color: green;">Limitations</h2>
|
370 |
+
<p>
|
371 |
+
While TigerLLM demonstrates impressive performance, limitations remain. The Bangla-TextBook corpus is restricted to Grades 6–12 and may not capture broader linguistic nuances, and the Bangla-Instruct dataset covers a limited subset of instruction types. Additionally, the models are currently limited to 1B and 9B parameters due to computational constraints.
|
372 |
+
</p>
|
373 |
+
|
374 |
+
<hr>
|
375 |
+
|
376 |
+
<h2 style="text-align: center; color: green;">Ethical Considerations</h2>
|
377 |
+
<p>
|
378 |
+
Our approach emphasizes ethical practices by using open-source educational materials, ensuring cultural sensitivity via volunteer contributions, and applying rigorous filtering methods to avoid harmful biases. Users should implement further safeguards when deploying TigerLLM in sensitive applications.
|
379 |
+
</p>
|
380 |
+
|
381 |
+
<hr>
|
382 |
+
|
383 |
+
<h2 style="text-align: center; color: green;">References</h2>
|
384 |
+
<ul>
|
385 |
+
<li>Alam, F., Chowdhury, S. A., et al. (2024). LLMs for low resource languages in multilingual settings.</li>
|
386 |
+
<li>Bai, Y., Jones, A., et al. (2024). Claude 3.5 Sonnet Technical Report.</li>
|
387 |
+
<li>Bhattacharjee, A., Hasan, T., et al. (2022). BanglaBERT: Language model pretraining and benchmarks for Bangla.</li>
|
388 |
+
<li>Brown, T., Mann, B., et al. (2023). GPT-4 Technical Report.</li>
|
389 |
+
<li>Brown, T., Mann, B., et al. (2020). Language models are few-shot learners.</li>
|
390 |
+
<li>Chowdhery, A., Narang, S., et al. (2022). PaLM: Scaling language modeling with pathways.</li>
|
391 |
+
<li>Corso, F., Pierri, F., et al. (2024). TikTokenizer research.</li>
|
392 |
+
<li>Dubey, A., Jauhri, A., et al. (2024). The LLaMA 3 herd of models.</li>
|
393 |
+
<li>Ekram, S. M. S., Rahman, A. A., et al. (2022). BanglaRQA benchmark.</li>
|
394 |
+
<li>Gunasekar, S., et al. (2023). Textbooks are all you need.</li>
|
395 |
+
<li>Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network.</li>
|
396 |
+
<li>Hu, E. J., Wallis, P., et al. Lora: Low-rank adaptation of large language models.</li>
|
397 |
+
<li>Mitra, A., Del Corro, L., et al. (2023). Orca 2: Teaching small language models how to reason.</li>
|
398 |
+
<li>Ortiz Suárez, P. J., Romary, L., & Sagot, B. Contextualized word embeddings for mid-resource languages.</li>
|
399 |
+
<li>Raihan, N., Anastasopoulos, A., & Zampieri, M. (2024). mHumanEval – A multilingual benchmark for code generation.</li>
|
400 |
+
<li>Rony, M. R. A. H., et al. (2024). BanglaQuaD: A Bangla open-domain question answering dataset.</li>
|
401 |
+
<li>Shafayat, S., et al. (2024). BEnQA: A benchmark for Bangla question answering and reasoning.</li>
|
402 |
+
<li>Taori, R., Gulrajani, I., et al. (2023). Alpaca: A replicable instruction-following model.</li>
|
403 |
+
<li>Team, G., et al. (2024). Gemma 2: Improving open language models at a practical size.</li>
|
404 |
+
<li>Wang, Y., et al. (2023). Self-instruct: Aligning language models with self-generated instructions.</li>
|
405 |
+
<li>Wang, Y., et al. (2024). MMLU-Pro: A robust multi-task language understanding benchmark.</li>
|
406 |
+
<li>Yue, X., et al. (2024). Pangea: A fully open multilingual multimodal LLM for 39 languages.</li>
|
407 |
+
<li>Zehady, A. K., et al. (2024). BongLLama: Llama for Bangla language.</li>
|
408 |
+
<li>Zhang, Y., et al. (2023). Llama: Open and efficient foundation language models.</li>
|
409 |
+
</ul>
|
410 |
+
|
411 |
+
<hr>
|
412 |
+
|
413 |
+
<h2 style="text-align: center; color: green;">Appendix A: Bangla-Instruct Curation</h2>
|
414 |
+
|
415 |
+
<h3 style="text-align: center; color: green;">A.1 Volunteer Information</h3>
|
416 |
+
<p>
|
417 |
+
Seed tasks were created by <span style="color: red;">50 volunteers</span> from various Bangladeshi universities:
|
418 |
+
<ul>
|
419 |
+
<li>15 from Computer Science and Engineering</li>
|
420 |
+
<li>10 from Bengali Literature</li>
|
421 |
+
<li>10 from Business Administration</li>
|
422 |
+
<li>8 from Science and Engineering</li>
|
423 |
+
<li>7 from Social Sciences</li>
|
424 |
+
</ul>
|
425 |
+
Each volunteer contributed 10 diverse instructions, resulting in 500 seed tasks.
|
426 |
+
</p>
|
427 |
+
|
428 |
+
<h3 style="text-align: center; color: green;">A.2 The Seed Dataset</h3>
|
429 |
+
<p>
|
430 |
+
The seed dataset covers 10 categories:
|
431 |
+
<ol>
|
432 |
+
<li><span style="color:red;">Cultural Knowledge and Heritage</span></li>
|
433 |
+
<li><span style="color:red;">Academic Writing</span></li>
|
434 |
+
<li><span style="color:red;">Mathematical Problem Solving</span></li>
|
435 |
+
<li><span style="color:red;">Programming and Technical</span></li>
|
436 |
+
<li><span style="color:red;">Creative Writing</span></li>
|
437 |
+
<li><span style="color:red;">Scientific Explanation</span></li>
|
438 |
+
<li><span style="color:red;">Business and Economics</span></li>
|
439 |
+
<li><span style="color:red;">Social Issues Analysis</span></li>
|
440 |
+
<li><span style="color:red;">Data Analysis and Statistics</span></li>
|
441 |
+
<li><span style="color:red;">Language and Translation</span></li>
|
442 |
+
</ol>
|
443 |
+
Each category is represented with approximately 50 tasks.
|
444 |
+
</p>
|
445 |
+
|
446 |
+
<h3 style="text-align: center; color: green;">A.3 Filtering Methodology</h3>
|
447 |
+
<p>
|
448 |
+
Filtering is based on:
|
449 |
+
<ul>
|
450 |
+
<li><span style="color:red;">Language Adherence</span>: High Bengali word ratio, Unicode consistency, and grammar score ≥ 0.8.</li>
|
451 |
+
<li><span style="color:red;">Cultural Sensitivity</span>: Ensuring religious neutrality, regional inclusivity, gender balance, and political neutrality.</li>
|
452 |
+
<li><span style="color:red;">Content Quality</span>: Minimum length, coherence between instruction and response, factual accuracy, and proper formatting.</li>
|
453 |
+
<li><span style="color:red;">Novelty Verification</span>: Ensuring low similarity with existing tasks and sufficient lexical diversity.</li>
|
454 |
+
</ul>
|
455 |
+
A pair (i, r) is accepted only if all criteria are met.
|
456 |
+
</p>
|
457 |
+
|
458 |
+
<hr>
|
459 |
+
|
460 |
+
<h2 style="text-align: center; color: green;">Appendix B: Experimentation Details</h2>
|
461 |
+
|
462 |
+
<h3 style="text-align: center; color: green;">B.1 Experimental Setup</h3>
|
463 |
+
<p>
|
464 |
+
Pretraining was conducted on a Lambda Labs cluster with 8 NVIDIA A100 GPUs (40GB each), 512GB RAM, and 2TB storage (~120 hours with gradient checkpointing). Finetuning was performed on a single NVIDIA A100 GPU via Google Colab (~96 hours).
|
465 |
+
</p>
|
466 |
+
|
467 |
+
<h3 style="text-align: center; color: green;">B.2 Pretraining Hyperparameters (Table 3)</h3>
|
468 |
+
<table>
|
469 |
+
<thead>
|
470 |
+
<tr>
|
471 |
+
<th style="color: green; text-align: center;">Hyperparameter</th>
|
472 |
+
<th style="color: green; text-align: center;">Value</th>
|
473 |
+
</tr>
|
474 |
+
</thead>
|
475 |
+
<tbody>
|
476 |
+
<tr>
|
477 |
+
<td>Per device train batch size</td>
|
478 |
+
<td>64</td>
|
479 |
+
</tr>
|
480 |
+
<tr>
|
481 |
+
<td>Gradient accumulation steps</td>
|
482 |
+
<td>16</td>
|
483 |
+
</tr>
|
484 |
+
<tr>
|
485 |
+
<td>Number of training epochs</td>
|
486 |
+
<td>4</td>
|
487 |
+
</tr>
|
488 |
+
<tr>
|
489 |
+
<td>Learning rate</td>
|
490 |
+
<td>5×10<sup>-6</sup></td>
|
491 |
+
</tr>
|
492 |
+
<tr>
|
493 |
+
<td>FP16</td>
|
494 |
+
<td>False</td>
|
495 |
+
</tr>
|
496 |
+
<tr>
|
497 |
+
<td>BF16</td>
|
498 |
+
<td>True</td>
|
499 |
+
</tr>
|
500 |
+
<tr>
|
501 |
+
<td>Dataloader num workers</td>
|
502 |
+
<td>8</td>
|
503 |
+
</tr>
|
504 |
+
<tr>
|
505 |
+
<td>Gradient checkpointing</td>
|
506 |
+
<td>True</td>
|
507 |
+
</tr>
|
508 |
+
<tr>
|
509 |
+
<td>Logging steps</td>
|
510 |
+
<td>1000</td>
|
511 |
+
</tr>
|
512 |
+
<tr>
|
513 |
+
<td>DDP find unused parameters</td>
|
514 |
+
<td>False</td>
|
515 |
+
</tr>
|
516 |
+
<tr>
|
517 |
+
<td>Max gradient norm</td>
|
518 |
+
<td>1.0</td>
|
519 |
+
</tr>
|
520 |
+
<tr>
|
521 |
+
<td>Warmup steps</td>
|
522 |
+
<td>1000</td>
|
523 |
+
</tr>
|
524 |
+
<tr>
|
525 |
+
<td>Evaluation strategy</td>
|
526 |
+
<td>steps</td>
|
527 |
+
</tr>
|
528 |
+
<tr>
|
529 |
+
<td>Evaluation steps</td>
|
530 |
+
<td>1,000</td>
|
531 |
+
</tr>
|
532 |
+
<tr>
|
533 |
+
<td>Save strategy</td>
|
534 |
+
<td>steps</td>
|
535 |
+
</tr>
|
536 |
+
<tr>
|
537 |
+
<td>Save steps</td>
|
538 |
+
<td>1,000</td>
|
539 |
+
</tr>
|
540 |
+
<tr>
|
541 |
+
<td>Save total limit</td>
|
542 |
+
<td>3</td>
|
543 |
+
</tr>
|
544 |
+
<tr>
|
545 |
+
<td>Load best model at end</td>
|
546 |
+
<td>True</td>
|
547 |
+
</tr>
|
548 |
+
<tr>
|
549 |
+
<td>Metric for best model loss</td>
|
550 |
+
<td>False</td>
|
551 |
+
</tr>
|
552 |
+
</tbody>
|
553 |
+
</table>
|
554 |
+
|
555 |
+
<h3 style="text-align: center; color: green;">B.3 Finetuning Hyperparameters</h3>
|
556 |
+
<p>
|
557 |
+
Finetuning settings for TigerLLM (1B) and (9B) are detailed in Tables 4 and 5.
|
558 |
+
</p>
|
559 |
+
|
560 |
+
<table>
|
561 |
+
<thead>
|
562 |
+
<tr>
|
563 |
+
<th style="color: green; text-align: center;">Parameter</th>
|
564 |
+
<th style="color: green; text-align: center;">TigerLLM (1B)</th>
|
565 |
+
</tr>
|
566 |
+
</thead>
|
567 |
+
<tbody>
|
568 |
+
<tr>
|
569 |
+
<td>Max Sequence Length</td>
|
570 |
+
<td>2048</td>
|
571 |
+
</tr>
|
572 |
+
<tr>
|
573 |
+
<td>Batch Size (Train/Eval)</td>
|
574 |
+
<td>16</td>
|
575 |
+
</tr>
|
576 |
+
<tr>
|
577 |
+
<td>Gradient Accumulation Steps</td>
|
578 |
+
<td>4</td>
|
579 |
+
</tr>
|
580 |
+
<tr>
|
581 |
+
<td>Number of Epochs</td>
|
582 |
+
<td>3</td>
|
583 |
+
</tr>
|
584 |
+
<tr>
|
585 |
+
<td>Learning Rate</td>
|
586 |
+
<td>1e-5</td>
|
587 |
+
</tr>
|
588 |
+
<tr>
|
589 |
+
<td>Weight Decay</td>
|
590 |
+
<td>0.02</td>
|
591 |
+
</tr>
|
592 |
+
<tr>
|
593 |
+
<td>Warmup Steps</td>
|
594 |
+
<td>10%</td>
|
595 |
+
</tr>
|
596 |
+
<tr>
|
597 |
+
<td>Optimizer</td>
|
598 |
+
<td>AdamW (8-bit)</td>
|
599 |
+
</tr>
|
600 |
+
<tr>
|
601 |
+
<td>LR Scheduler</td>
|
602 |
+
<td>Cosine</td>
|
603 |
+
</tr>
|
604 |
+
<tr>
|
605 |
+
<td>Precision</td>
|
606 |
+
<td>BF16</td>
|
607 |
+
</tr>
|
608 |
+
<tr>
|
609 |
+
<td>Evaluation Steps</td>
|
610 |
+
<td>50</td>
|
611 |
+
</tr>
|
612 |
+
<tr>
|
613 |
+
<td>Seed</td>
|
614 |
+
<td>42</td>
|
615 |
+
</tr>
|
616 |
+
</tbody>
|
617 |
+
</table>
|
618 |
+
|
619 |
+
<table>
|
620 |
+
<thead>
|
621 |
+
<tr>
|
622 |
+
<th style="color: green; text-align: center;">Parameter</th>
|
623 |
+
<th style="color: green; text-align: center;">TigerLLM (9B)</th>
|
624 |
+
</tr>
|
625 |
+
</thead>
|
626 |
+
<tbody>
|
627 |
+
<tr>
|
628 |
+
<td>Max Sequence Length</td>
|
629 |
+
<td>2048</td>
|
630 |
+
</tr>
|
631 |
+
<tr>
|
632 |
+
<td>Batch Size (Train/Eval)</td>
|
633 |
+
<td>32</td>
|
634 |
+
</tr>
|
635 |
+
<tr>
|
636 |
+
<td>Gradient Accumulation Steps</td>
|
637 |
+
<td>8</td>
|
638 |
+
</tr>
|
639 |
+
<tr>
|
640 |
+
<td>Number of Epochs</td>
|
641 |
+
<td>3</td>
|
642 |
+
</tr>
|
643 |
+
<tr>
|
644 |
+
<td>Learning Rate</td>
|
645 |
+
<td>1e-6</td>
|
646 |
+
</tr>
|
647 |
+
<tr>
|
648 |
+
<td>Weight Decay</td>
|
649 |
+
<td>0.04</td>
|
650 |
+
</tr>
|
651 |
+
<tr>
|
652 |
+
<td>Warmup Steps</td>
|
653 |
+
<td>15%</td>
|
654 |
+
</tr>
|
655 |
+
<tr>
|
656 |
+
<td>Optimizer</td>
|
657 |
+
<td>AdamW (8-bit)</td>
|
658 |
+
</tr>
|
659 |
+
<tr>
|
660 |
+
<td>LR Scheduler</td>
|
661 |
+
<td>Cosine</td>
|
662 |
+
</tr>
|
663 |
+
<tr>
|
664 |
+
<td>Precision</td>
|
665 |
+
<td>BF16</td>
|
666 |
+
</tr>
|
667 |
+
<tr>
|
668 |
+
<td>Evaluation Steps</td>
|
669 |
+
<td>250</td>
|
670 |
+
</tr>
|
671 |
+
<tr>
|
672 |
+
<td>Seed</td>
|
673 |
+
<td>42</td>
|
674 |
+
</tr>
|
675 |
+
</tbody>
|
676 |
+
</table>
|
677 |
+
|
678 |
+
<hr>
|
679 |
+
|
680 |
+
<h2 style="text-align: center; color: green;">Appendix C: TigerLLM - Training Pipeline</h2>
|
681 |
+
<p>
|
682 |
+
Figure 2 illustrates the multi-stage training pipeline for producing both TigerLLM (1B) and TigerLLM (9B). The process begins with pre-trained models (LLaMA 3.2 and Gemma-2), followed by continual pretraining on the Bangla-TextBook corpus and subsequent finetuning on the Bangla-Instruct dataset. Figures 3 and 4 depict the loss curves during the pretraining and finetuning stages respectively.
|
683 |
+
</p>
|