|
|
|
"""LongcatFlash model configuration""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.modeling_rope_utils import rope_config_validation |
|
|
|
|
|
LONGCAT_PRETRAINED_CONFIG_ARCHIVE_MAP = {} |
|
|
|
|
|
class LongcatFlashConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`LongcatFlashModel`]. It is used to instantiate an LongcatFlash |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the LongcatFlash. |
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 131072): |
|
Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`LongcatFlashModel`] |
|
hidden_size (`int`, *optional*, defaults to 7168): |
|
Dimension of the hidden representations. |
|
ffn_hidden_size (`int`, *optional*, defaults to 18432): |
|
Dimension of the MLP representations. |
|
expert_ffn_hidden_size (`int`, *optional*, defaults to 2048): |
|
Dimension of the MoE representations. |
|
num_layers (`int`, *optional*, defaults to 61): |
|
Number of hidden layers in the Transformer decoder. |
|
num_attention_heads (`int`, *optional*, defaults to 128): |
|
Number of attention heads for each attention layer in the Transformer decoder. |
|
num_key_value_heads (`int`, *optional*, defaults to 128): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to |
|
`num_attention_heads`. |
|
n_routed_experts (`int`, *optional*, defaults to 256): |
|
Number of routed experts. |
|
routed_scaling_factor (`float`, *optional*, defaults to 2.5): |
|
Scaling factor or routed experts. |
|
kv_lora_rank (`int`, *optional*, defaults to 512): |
|
Rank of the LoRA matrices for key and value projections. |
|
q_lora_rank (`int`, *optional*, defaults to 1536): |
|
Rank of the LoRA matrices for query projections. |
|
qk_rope_head_dim (`int`, *optional*, defaults to 64): |
|
Dimension of the query/key heads that use rotary position embeddings. |
|
v_head_dim (`int`, *optional*, defaults to 128): |
|
Dimension of the value heads. |
|
qk_nope_head_dim (`int`, *optional*, defaults to 128): |
|
Dimension of the query/key heads that don't use rotary position embeddings. |
|
norm_topk_prob (`bool`, *optional*, defaults to `True`): |
|
Whether to normalize the weights of the routed experts. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to 4096): |
|
The maximum sequence length that this model might ever be used with. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the rms normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
pad_token_id (`int`, *optional*): |
|
Padding token id. |
|
bos_token_id (`int`, *optional*, defaults to 0): |
|
Beginning of stream token id. |
|
eos_token_id (`int`, *optional*, defaults to 1): |
|
End of stream token id. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether to tie weight embeddings |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): |
|
Whether to use a bias in the query, key, value and output projection layers during self-attention. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
attention_method (`str`, *optional*, defaults to `"MLA"`): |
|
The attention method to use. |
|
initializer_range (`float`, *optional*, defaults to 0.006): |
|
The initializer range for the model. |
|
router_bias (`bool`, *optional*, defaults to `False`): |
|
Whether to use a bias in the router. |
|
zero_expert_num (`int`, *optional*, defaults to `None`): |
|
The number of zero experts to use. |
|
zero_expert_type (`str`, *optional*, defaults to `None`): |
|
The type of zero expert to use. |
|
|
|
```python |
|
>>> from transformers import LongcatFlashModel, LongcatFlashConfig |
|
|
|
>>> # Initializing a LongcatFlash style configuration |
|
>>> configuration = LongcatFlashConfig() |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "longcat_flash" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
base_model_tp_plan = { |
|
"layers.*.self_attn.k_proj": "colwise", |
|
"layers.*.self_attn.v_proj": "colwise", |
|
"layers.*.self_attn.o_proj": "rowwise", |
|
"layers.*.mlp.experts.*.gate_proj": "local_colwise", |
|
"layers.*.mlp.experts.*.up_proj": "local_colwise", |
|
"layers.*.mlp.experts.*.down_proj": "local_rowwise", |
|
"layers.*.mlps.*.gate_proj": "local_colwise", |
|
"layers.*.mlps.*.up_proj": "local_colwise", |
|
"layers.*.mlps.*.down_proj": "local_rowwise", |
|
} |
|
base_model_pp_plan = { |
|
"embed_tokens": (["input_ids"], ["inputs_embeds"]), |
|
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]), |
|
"norm": (["hidden_states"], ["hidden_states"]), |
|
} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=131072, |
|
hidden_size=7168, |
|
ffn_hidden_size=18432, |
|
expert_ffn_hidden_size=2048, |
|
num_layers=61, |
|
num_attention_heads=128, |
|
num_key_value_heads=None, |
|
n_routed_experts=256, |
|
routed_scaling_factor=1, |
|
kv_lora_rank=512, |
|
q_lora_rank=1536, |
|
qk_rope_head_dim=64, |
|
v_head_dim=128, |
|
qk_nope_head_dim=128, |
|
mla_scale_q_lora=True, |
|
mla_scale_kv_lora=True, |
|
moe_topk=8, |
|
norm_topk_prob=False, |
|
hidden_act="silu", |
|
max_position_embeddings=4096, |
|
rms_norm_eps=1e-6, |
|
use_cache=True, |
|
pad_token_id=None, |
|
bos_token_id=0, |
|
eos_token_id=1, |
|
tie_word_embeddings=False, |
|
rope_theta=10000.0, |
|
attention_bias=False, |
|
attention_dropout=0.0, |
|
attention_method='MLA', |
|
initializer_range=0.006, |
|
router_bias=False, |
|
zero_expert_num=None, |
|
zero_expert_type=None, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.ffn_hidden_size = ffn_hidden_size |
|
self.expert_ffn_hidden_size = expert_ffn_hidden_size |
|
self.num_layers = num_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.n_routed_experts = n_routed_experts |
|
self.routed_scaling_factor = routed_scaling_factor |
|
self.kv_lora_rank = kv_lora_rank |
|
self.q_lora_rank = q_lora_rank |
|
self.qk_rope_head_dim = qk_rope_head_dim |
|
self.v_head_dim = v_head_dim |
|
self.qk_nope_head_dim = qk_nope_head_dim |
|
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim |
|
self.moe_topk = moe_topk |
|
self.norm_topk_prob = norm_topk_prob |
|
self.mla_scale_q_lora = mla_scale_q_lora |
|
self.mla_scale_kv_lora = mla_scale_kv_lora |
|
self.attention_method = attention_method |
|
self.initializer_range = initializer_range |
|
self.router_bias = router_bias |
|
self.zero_expert_num = zero_expert_num |
|
self.zero_expert_type = zero_expert_type |
|
|
|
if self.attention_method == "MLA": |
|
self.head_dim = qk_rope_head_dim |
|
else: |
|
ValueError('attention_method should be one of ["MLA"]') |
|
|
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.attention_bias = attention_bias |
|
self.attention_dropout = attention_dropout |
|
|
|
rope_config_validation(self) |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
@property |
|
def num_hidden_layers(self): |
|
return self.num_layers |
|
|
|
|
|
__all__ = ["LongcatFlashConfig"] |
|
|