--- license: llama2 base_model: meta-llama/CodeLlama-13b-Instruct-hf tags: - alignment-handbook - generated_from_trainer datasets: - meng-lab/CodeLlama-13B-Instruct-gsm8k model-index: - name: CodeLlama-13b-Instruct-sft-5e-3-epoch-100-gsm8k results: [] --- [Visualize in Weights & Biases](https://wandb.ai/uva-llm/huggingface/runs/26r5nw5b) # CodeLlama-13b-Instruct-sft-5e-3-epoch-100-gsm8k This model is a fine-tuned version of [meta-llama/CodeLlama-13b-Instruct-hf](https://huggingface.co/meta-llama/CodeLlama-13b-Instruct-hf) on the meng-lab/CodeLlama-13B-Instruct-gsm8k dataset. It achieves the following results on the evaluation set: - Loss: 4.0229 - Loss Layer 5 Head: 1.4382 - Loss Layer 10 Head: 0.9813 - Loss Layer 15 Head: 0.9315 - Loss Layer 20 Head: 0.4901 - Loss Layer 25 Head: 0.1839 - Loss Layer 30 Head: 0.1044 - Loss Layer 35 Head: 0.1004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Loss Layer 5 Head | Loss Layer 10 Head | Loss Layer 15 Head | Loss Layer 20 Head | Loss Layer 25 Head | Loss Layer 30 Head | Loss Layer 35 Head | |:-------------:|:-------:|:----:|:---------------:|:-----------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:| | 3.5888 | 26.0163 | 200 | 4.9539 | 1.5721 | 1.0672 | 1.1373 | 0.7569 | 0.2971 | 0.1321 | 0.2111 | | 2.2226 | 52.0325 | 400 | 4.1476 | 1.4725 | 0.9947 | 0.9848 | 0.4952 | 0.1877 | 0.1073 | 0.1141 | | 1.9091 | 78.0488 | 600 | 4.0229 | 1.4382 | 0.9813 | 0.9315 | 0.4901 | 0.1839 | 0.1044 | 0.1004 | ### Framework versions - Transformers 4.43.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.19.1