--- license: llama2 base_model: meta-llama/CodeLlama-34b-Instruct-hf tags: - alignment-handbook - generated_from_trainer datasets: - meng-lab/CodeLlama-34B-Instruct-gsm8k model-index: - name: CodeLlama-34b-Instruct-sft-5e-3-epoch-100-gsm8k results: [] --- [Visualize in Weights & Biases](https://wandb.ai/uva-llm/huggingface/runs/nemwhwry) # CodeLlama-34b-Instruct-sft-5e-3-epoch-100-gsm8k This model is a fine-tuned version of [meta-llama/CodeLlama-34b-Instruct-hf](https://huggingface.co/meta-llama/CodeLlama-34b-Instruct-hf) on the meng-lab/CodeLlama-34B-Instruct-gsm8k dataset. It achieves the following results on the evaluation set: - Loss: 4.0230 - Loss Layer 6 Head: 1.2898 - Loss Layer 12 Head: 1.0049 - Loss Layer 18 Head: 0.9093 - Loss Layer 24 Head: 0.4408 - Loss Layer 30 Head: 0.2683 - Loss Layer 36 Head: 0.1391 - Loss Layer 42 Head: 0.0639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Loss Layer 6 Head | Loss Layer 12 Head | Loss Layer 18 Head | Loss Layer 24 Head | Loss Layer 30 Head | Loss Layer 36 Head | Loss Layer 42 Head | |:-------------:|:-------:|:----:|:---------------:|:-----------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:| | 2.6241 | 25.8065 | 200 | 4.3768 | 1.3707 | 1.0927 | 0.9492 | 0.4907 | 0.2888 | 0.1534 | 0.0899 | | 1.6189 | 51.6129 | 400 | 4.0476 | 1.3067 | 0.9916 | 0.9104 | 0.4445 | 0.2716 | 0.1405 | 0.0663 | | 1.3737 | 77.4194 | 600 | 4.0230 | 1.2898 | 1.0049 | 0.9093 | 0.4408 | 0.2683 | 0.1391 | 0.0639 | ### Framework versions - Transformers 4.43.2 - Pytorch 2.1.2 - Datasets 3.2.0 - Tokenizers 0.19.1