--- base_model: Qwen/Qwen2.5-0.5B library_name: peft datasets: - heliosbrahma/mental_health_chatbot_dataset language: - en metrics: - code_eval pipeline_tag: text-generation tags: - medical --- - Model perplexity: 1.9 - Loss: 0.6 Use this model with PEFT ```Python import torch from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel base_model_id = "Qwen/Qwen2.5-0.5B" lora_adapter_id = "meomeo163/QWEN2.5_chatbot_health_care" tokenizer = AutoTokenizer.from_pretrained(base_model_id) base_model = AutoModelForCausalLM.from_pretrained( base_model_id, torch_dtype=torch.bfloat16, device_map="auto", ) model = PeftModel.from_pretrained(base_model, lora_adapter_id) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) prompt = input("Human: ") # Mã hóa input và chuyển đến thiết bị phù hợp inputs = tokenizer(prompt, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_new_tokens=500) # Adjusted max_new_tokens for shorter response print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```