File size: 11,513 Bytes
87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 87b3d4b 96b7b35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "axYlcDTznci4"
},
"source": [
"# Faster Foundation Models with `torch.compile`"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "B-yw8KMWsjfY"
},
"source": [
"## Introduction to `torch.compile()`"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "AmmT4aDnqgOB"
},
"source": [
"This guide aims to provide a benchmark on the inference speed-ups introduced with `torch.compile()` with no reduction in model performance for foundation models in 🤗 Transformers.\n",
"\n",
"Most used `torch.compile` modes are following:\n",
"\n",
"- \"default\" is the default mode, which is a good balance between performance and overhead\n",
"\n",
"- \"reduce-overhead\" reduces the overhead of python with CUDA graphs, useful for small batches, consumes a lot of memory. As of now only works for CUDA only graphs which do not mutate inputs.\n",
"\n",
"If you have a lot of memory to use, the best speed-up is through `reduce-overhead`. How much speed-up one can get depends on the model, so in this tutorial we will check the most used foundation models."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5sCfbPTn7wBE"
},
"source": [
"## OWLv2\n",
"\n",
"OWLv2 is a zero-shot object detection model released by Google Brain. We will load base version."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "joeX3J315K0G"
},
"source": [
"Let's load the model and processor for OWLv2."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "Ztfcdqkul62z"
},
"outputs": [],
"source": [
"from PIL import Image\n",
"import requests\n",
"\n",
"url = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg'\n",
"image = Image.open(requests.get(url, stream=True).raw)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "84npPHCQpHZ6",
"outputId": "f30c41c7-b897-460d-d2a4-a1276bf2263e"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:89: UserWarning: \n",
"The secret `HF_TOKEN` does not exist in your Colab secrets.\n",
"To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n",
"You will be able to reuse this secret in all of your notebooks.\n",
"Please note that authentication is recommended but still optional to access public models or datasets.\n",
" warnings.warn(\n"
]
}
],
"source": [
"from transformers import AutoProcessor, Owlv2ForObjectDetection\n",
"import torch\n",
"import numpy as np\n",
"\n",
"processor = AutoProcessor.from_pretrained(\"google/owlv2-base-patch16-ensemble\")\n",
"model = Owlv2ForObjectDetection.from_pretrained(\"google/owlv2-base-patch16-ensemble\").to(\"cuda\")\n",
"\n",
"texts = [[\"a photo of a bee\", \"a photo of a bird\"]]\n",
"inputs = processor(text=texts, images=image, return_tensors=\"pt\").to(\"cuda\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "3AedkjLu5PRo"
},
"source": [
"We can now get to benchmarking. We will benchmark the model itself and the compiled model."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "RQQSEgkQtXEV",
"outputId": "8003590b-c4bc-4b3d-9b1b-dade853b8dd8"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"255.7331792195638\n"
]
}
],
"source": [
"starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)\n",
"repetitions = 30\n",
"timings=np.zeros((repetitions,1))\n",
"\n",
"for _ in range(10):\n",
" _ = model(**inputs)\n",
"\n",
"with torch.no_grad():\n",
" for rep in range(repetitions):\n",
" torch.cuda.synchronize()\n",
" starter.record()\n",
" output = model(**inputs)\n",
" ender.record()\n",
" torch.cuda.synchronize()\n",
" curr_time = starter.elapsed_time(ender)\n",
" timings[rep] = curr_time\n",
"\n",
"mean_syn = np.sum(timings) / repetitions\n",
"print(mean_syn)\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "bEZiNgaupOx6",
"outputId": "e5d47875-1e40-4997-e533-94bf0ff34d14"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/lib/python3.10/multiprocessing/popen_fork.py:66: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n",
" self.pid = os.fork()\n",
"/usr/local/lib/python3.10/dist-packages/torch/_inductor/compile_fx.py:124: UserWarning: TensorFloat32 tensor cores for float32 matrix multiplication available but not enabled. Consider setting `torch.set_float32_matmul_precision('high')` for better performance.\n",
" warnings.warn(\n",
"skipping cudagraphs due to skipping cudagraphs due to cpu device. Found from : \n",
" File \"/usr/local/lib/python3.10/dist-packages/transformers/models/owlv2/modeling_owlv2.py\", line 1711, in forward\n",
" pred_boxes = self.box_predictor(image_feats, feature_map)\n",
" File \"/usr/local/lib/python3.10/dist-packages/transformers/models/owlv2/modeling_owlv2.py\", line 1374, in box_predictor\n",
" box_bias = self.box_bias.to(feature_map.device)\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"154.6884775797526\n"
]
}
],
"source": [
"starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)\n",
"timings=np.zeros((repetitions,1))\n",
"\n",
"compiled_model = torch.compile(model, mode=\"reduce-overhead\").to(\"cuda\")\n",
"\n",
"for _ in range(30):\n",
" with torch.no_grad():\n",
" _ = compiled_model(**inputs)\n",
"\n",
"\n",
"with torch.no_grad():\n",
" for rep in range(repetitions):\n",
" torch.cuda.synchronize()\n",
" starter.record()\n",
" output = compiled_model(**inputs)\n",
" ender.record()\n",
" torch.cuda.synchronize()\n",
" curr_time = starter.elapsed_time(ender)\n",
" timings[rep] = curr_time\n",
"\n",
"mean_syn = np.sum(timings) / repetitions\n",
"print(mean_syn)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "d_0d7DwN6gBt"
},
"source": [
"We got nearly 40 percent speed-up! You can also increase the batch size and see how much further speed-up you can get."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"id": "exKoOptB61UL"
},
"outputs": [],
"source": [
"texts = [[\"a photo of a bee\", \"a photo of a bird\"] for _ in range(8)]\n",
"images = [image for _ in range(8)]\n",
"inputs = processor(text=texts, images=image, return_tensors=\"pt\").to(\"cuda\")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "EFj9Pgra7Km8",
"outputId": "5fefb8c0-9e86-478c-e9e2-0dbc0fa8a37b"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"269.3023401896159\n"
]
}
],
"source": [
"starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)\n",
"repetitions = 30\n",
"timings=np.zeros((repetitions,1))\n",
"\n",
"for _ in range(10):\n",
" _ = model(**inputs)\n",
"\n",
"with torch.no_grad():\n",
" for rep in range(repetitions):\n",
" torch.cuda.synchronize()\n",
" starter.record()\n",
" output = model(**inputs)\n",
" ender.record()\n",
" torch.cuda.synchronize()\n",
" curr_time = starter.elapsed_time(ender)\n",
" timings[rep] = curr_time\n",
"\n",
"mean_syn = np.sum(timings) / repetitions\n",
"print(mean_syn)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "OuQZmgTK7UCo",
"outputId": "7184eb1d-b545-4bb6-b544-3effd5c2545a"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"159.77137603759766\n"
]
}
],
"source": [
"starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)\n",
"timings=np.zeros((repetitions,1))\n",
"\n",
"compiled_model = torch.compile(model, mode=\"reduce-overhead\").to(\"cuda\")\n",
"\n",
"for _ in range(30):\n",
" with torch.no_grad():\n",
" _ = compiled_model(**inputs)\n",
"\n",
"\n",
"with torch.no_grad():\n",
" for rep in range(repetitions):\n",
" torch.cuda.synchronize()\n",
" starter.record()\n",
" output = compiled_model(**inputs)\n",
" ender.record()\n",
" torch.cuda.synchronize()\n",
" curr_time = starter.elapsed_time(ender)\n",
" timings[rep] = curr_time\n",
"\n",
"mean_syn = np.sum(timings) / repetitions\n",
"print(mean_syn)"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "L4",
"machine_shape": "hm",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|