File size: 2,947 Bytes
87b3d4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from datasets import load_dataset
import torch
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration, Trainer, TrainingArguments, BitsAndBytesConfig
from peft import get_peft_model, LoraConfig
import os

USE_LORA = False
USE_QLORA = False 
FREEZE_VISION = False 

ds = load_dataset('merve/vqav2-small', split="validation")
ds = ds.train_test_split(test_size=0.5)["train"]

model_id = "google/paligemma2-3b-pt-448" 
processor = PaliGemmaProcessor.from_pretrained(model_id)

device = "cuda" if torch.cuda.is_available() else "cpu"

image_token = processor.tokenizer.convert_tokens_to_ids("<image>")

def collate_fn(examples):
  texts = ["<image>answer en " + example["question"] for example in examples]
  labels= [example['multiple_choice_answer'] for example in examples]
  images = [example["image"].convert("RGB") for example in examples]
  tokens = processor(text=texts, images=images, suffix=labels,
                    return_tensors="pt", padding="longest")

  tokens = tokens.to(torch.bfloat16).to(device)
  return tokens


if USE_LORA or USE_QLORA: 
    lora_config = LoraConfig(
    r=8,
    target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
    task_type="CAUSAL_LM",
    )
    if USE_QLORA:
        bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_type=torch.bfloat16
            )
    model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, device_map="auto", 
                                    quantization_config=bnb_config if USE_QLORA else None,
                                    torch_dtype=torch.bfloat16)
    model = get_peft_model(model, lora_config)
    model = model.to(device)
    model.print_trainable_parameters()
else:
    model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, device_map="auto").to(device)
    model = model.to(device)

    if FREEZE_VISION:
        for param in model.vision_tower.parameters():
            param.requires_grad = False

        for param in model.multi_modal_projector.parameters():
            param.requires_grad = False


args=TrainingArguments(
            num_train_epochs=3,
            remove_unused_columns=False,
            per_device_train_batch_size=4,
            gradient_accumulation_steps=4,
            warmup_steps=2,
            learning_rate=2e-5,
            weight_decay=1e-6,
            adam_beta2=0.999,
            logging_steps=100,
            optim="adamw_hf",
            save_strategy="steps",
            save_steps=1000,
            save_total_limit=1,
            push_to_hub=True
            output_dir="paligemma_vqav2",
            bf16=True,
            report_to=["tensorboard"],
            dataloader_pin_memory=False
        )


trainer = Trainer(
        model=model,
        train_dataset=ds ,
        data_collator=collate_fn,
        args=args
        )

trainer.train()