File size: 3,849 Bytes
87b3d4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import torch
from peft import LoraConfig, prepare_model_for_kbit_training, get_peft_model
from transformers import AutoProcessor, BitsAndBytesConfig, Idefics3ForConditionalGeneration
from datasets import load_dataset
DEVICE = "cuda:4"
PCI_BUS_ID=4
CUDA_VISIBLE_DEVICES=4
USE_LORA = False
USE_QLORA = True
model_id = "HuggingFaceM4/Idefics3-8B-Llama3"
processor = AutoProcessor.from_pretrained(
model_id
)
if USE_QLORA or USE_LORA:
lora_config = LoraConfig(
r=8,
lora_alpha=8,
lora_dropout=0.1,
target_modules=['down_proj','o_proj','k_proj','q_proj','gate_proj','up_proj','v_proj'],
use_dora=False if USE_QLORA else True,
init_lora_weights="gaussian"
)
lora_config.inference_mode = False
if USE_QLORA:
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = Idefics3ForConditionalGeneration.from_pretrained(
model_id,
quantization_config=bnb_config if USE_QLORA else None,
_attn_implementation="flash_attention_2",
device_map="auto"
)
model.add_adapter(lora_config)
model.enable_adapters()
model = prepare_model_for_kbit_training(model)
model = get_peft_model(model, lora_config)
print(model.get_nb_trainable_parameters())
else:
model = Idefics3ForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
_attn_implementation="flash_attention_2",
).to(DEVICE)
# if you'd like to only fine-tune LLM
for param in model.model.vision_model.parameters():
param.requires_grad = False
ds = load_dataset('merve/vqav2-small', trust_remote_code=True)
split_ds = ds["validation"].train_test_split(test_size=0.8)
train_ds = split_ds["train"]
image_token_id = processor.tokenizer.additional_special_tokens_ids[
processor.tokenizer.additional_special_tokens.index("<image>")]
def collate_fn(examples):
texts = []
images = []
for example in examples:
image = example["image"]
question = example["question"]
answer = example["multiple_choice_answer"]
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "Answer briefly."},
{"type": "image"},
{"type": "text", "text": question}
]
},
{
"role": "assistant",
"content": [
{"type": "text", "text": answer}
]
}
]
text = processor.apply_chat_template(messages, add_generation_prompt=False)
texts.append(text.strip())
images.append([image])
batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
labels = batch["input_ids"].clone()
labels[labels == processor.tokenizer.pad_token_id] = -100
labels[labels == image_token_id] = -100
batch["labels"] = labels
return batch
from transformers import TrainingArguments, Trainer
training_args = TrainingArguments(
num_train_epochs=1,
per_device_train_batch_size=1, # increase for QLoRA
gradient_accumulation_steps=8,
warmup_steps=50,
learning_rate=1e-4,
weight_decay=0.01,
logging_steps=25,
save_strategy="steps",
save_steps=250,
save_total_limit=1,
optim="adamw_hf", # for 8-bit, pick paged_adamw_hf
#evaluation_strategy="epoch",
bf16=True,
output_dir="./idefics3-llama-vqav2",
hub_model_id="idefics3-llama-vqav2",
remove_unused_columns=False,
)
trainer = Trainer(
model=model,
args=training_args,
data_collator=collate_fn,
train_dataset=train_ds,
)
trainer.train()
trainer.push_to_hub() |