diff --git "a/ShieldGemma_2_for_Vision_LM_Safety.ipynb" "b/ShieldGemma_2_for_Vision_LM_Safety.ipynb"
--- "a/ShieldGemma_2_for_Vision_LM_Safety.ipynb"
+++ "b/ShieldGemma_2_for_Vision_LM_Safety.ipynb"
@@ -1,548 +1,184 @@
{
- "nbformat": 4,
- "nbformat_minor": 0,
- "metadata": {
- "colab": {
- "provenance": [],
- "machine_shape": "hm",
- "gpuType": "L4",
- "include_colab_link": true
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "view-in-github"
+ },
+ "source": [
+ "
"
+ ]
},
- "kernelspec": {
- "name": "python3",
- "display_name": "Python 3"
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "hyguacpRPdJS"
+ },
+ "source": [
+ "
\n",
+ "\n",
+ "## ShieldGemma 2\n",
+ "\n",
+ "ShieldGemma 2 is a safety checker for vision language models. Input images to vision language models in production can contain unsafe themes, and ShieldGemma 2 can classify them before inputting those images to vision language models.\n",
+ "\n",
+ "In this notebook we will go through how to briefly infer with ShieldGemma 2.\n",
+ "\n",
+ "**Trigger Warning**: This notebook can contain keywords that can cause triggers."
+ ]
},
- "language_info": {
- "name": "python"
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "6gOYyNwdP114"
+ },
+ "source": [
+ "We need to upgrade transformers and login to Hugging Face since this model is gated."
+ ]
},
- "accelerator": "GPU",
- "widgets": {
- "application/vnd.jupyter.widget-state+json": {
- "97375927970449739b877b97f0bc215b": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_1bb0705b0c4c4ca0bb114587056e1087",
- "IPY_MODEL_7ea5ee4d642e4b99bf9c6460b24f2250",
- "IPY_MODEL_530a43846b9c4d21a1ffda8b1a7c39a0"
- ],
- "layout": "IPY_MODEL_cfda0c5403c740128b6ed8165b294d4d"
- }
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
- "1bb0705b0c4c4ca0bb114587056e1087": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_a327df45929941ff8d506c7f6c134c3d",
- "placeholder": "",
- "style": "IPY_MODEL_6acb4a97db60439e82ef736e0bf25378",
- "value": "Loading checkpoint shards: 100%"
- }
+ "id": "54OmYg8E4deL",
+ "outputId": "4bb30918-f103-4024-94d7-a8c8f4e37fad"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/10.2 MB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━\u001b[0m \u001b[32m7.2/10.2 MB\u001b[0m \u001b[31m217.7 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m10.2/10.2 MB\u001b[0m \u001b[31m197.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.2/10.2 MB\u001b[0m \u001b[31m109.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25h"
+ ]
+ }
+ ],
+ "source": [
+ "!pip install -U -q transformers"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "KWZQkbIOdEa-"
+ },
+ "outputs": [],
+ "source": [
+ "from huggingface_hub import notebook_login\n",
+ "\n",
+ "notebook_login()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "leosA0JsQD5K"
+ },
+ "source": [
+ "We can initialize ShieldGemma 2 model and processor as follows."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 208,
+ "referenced_widgets": [
+ "97375927970449739b877b97f0bc215b",
+ "1bb0705b0c4c4ca0bb114587056e1087",
+ "7ea5ee4d642e4b99bf9c6460b24f2250",
+ "530a43846b9c4d21a1ffda8b1a7c39a0",
+ "cfda0c5403c740128b6ed8165b294d4d",
+ "a327df45929941ff8d506c7f6c134c3d",
+ "6acb4a97db60439e82ef736e0bf25378",
+ "a809cd83602a46aea3fb52fcf798b328",
+ "793bcab23bc547e7a39a3825a3cfc00b",
+ "c3b97f01108543188b3acc4b5c5951e4",
+ "6e2b2a35e144470aaf9bb152ba622db0"
+ ]
},
- "7ea5ee4d642e4b99bf9c6460b24f2250": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_a809cd83602a46aea3fb52fcf798b328",
- "max": 2,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_793bcab23bc547e7a39a3825a3cfc00b",
- "value": 2
- }
+ "id": "5Jhkj54b89Ok",
+ "outputId": "8da91fb5-4cb8-46a1-8959-ae5975a8de1a"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.11/dist-packages/huggingface_hub/utils/_auth.py:94: UserWarning: \n",
+ "The secret `HF_TOKEN` does not exist in your Colab secrets.\n",
+ "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n",
+ "You will be able to reuse this secret in all of your notebooks.\n",
+ "Please note that authentication is recommended but still optional to access public models or datasets.\n",
+ " warnings.warn(\n"
+ ]
},
- "530a43846b9c4d21a1ffda8b1a7c39a0": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_c3b97f01108543188b3acc4b5c5951e4",
- "placeholder": "",
- "style": "IPY_MODEL_6e2b2a35e144470aaf9bb152ba622db0",
- "value": " 2/2 [00:02<00:00, 1.08s/it]"
- }
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "97375927970449739b877b97f0bc215b",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Loading checkpoint shards: 0%| | 0/2 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
},
- "cfda0c5403c740128b6ed8165b294d4d": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "a327df45929941ff8d506c7f6c134c3d": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "6acb4a97db60439e82ef736e0bf25378": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "a809cd83602a46aea3fb52fcf798b328": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "793bcab23bc547e7a39a3825a3cfc00b": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "c3b97f01108543188b3acc4b5c5951e4": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "6e2b2a35e144470aaf9bb152ba622db0": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.50, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.\n",
+ "Some kwargs in processor config are unused and will not have any effect: policy_definitions. \n"
+ ]
}
- }
- }
- },
- "cells": [
+ ],
+ "source": [
+ "from transformers import AutoProcessor, ShieldGemma2ForImageClassification\n",
+ "from PIL import Image\n",
+ "import requests\n",
+ "import torch\n",
+ "model_id = \"google/shieldgemma-2-4b-it\"\n",
+ "model = ShieldGemma2ForImageClassification.from_pretrained(model_id).to(\"cuda\")\n",
+ "processor = AutoProcessor.from_pretrained(model_id)"
+ ]
+ },
{
"cell_type": "markdown",
"metadata": {
- "id": "view-in-github",
- "colab_type": "text"
+ "id": "U1rLMkkLQWAk"
},
"source": [
- "
"
+ "**Note:** This model has image and text input and probability output so it has an image classification head as abstraction, but it's actually a vision language model. So if you want to use it with pipeline, use \"image-text-to-text\" pipeline and not \"image-classification\" pipeline."
]
},
{
"cell_type": "markdown",
+ "metadata": {
+ "id": "1GLRq0b-Qrxn"
+ },
"source": [
- "
\n",
- "\n",
- "## ShieldGemma 2\n",
- "\n",
- "ShieldGemma 2 is a safety checker for vision language models. Input images to vision language models in production can contain unsafe themes, and ShieldGemma 2 can classify them before inputting those images to vision language models.\n",
+ "ShieldGemma 2 takes two inputs: image, and policies. Policies are essentially dictionary of policy name and policy description.\n",
"\n",
- "In this notebook we will go through how to briefly infer with ShieldGemma 2.\n",
- "\n",
- "**Trigger Warning**: This notebook can contain keywords that can cause triggers."
- ],
- "metadata": {
- "id": "hyguacpRPdJS"
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "We need to upgrade transformers and login to Hugging Face since this model is gated."
- ],
- "metadata": {
- "id": "6gOYyNwdP114"
- }
- },
- {
- "cell_type": "code",
- "source": [
- "!pip install -U -q transformers"
- ],
- "metadata": {
- "id": "54OmYg8E4deL",
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "outputId": "4bb30918-f103-4024-94d7-a8c8f4e37fad"
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/10.2 MB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━\u001b[0m \u001b[32m7.2/10.2 MB\u001b[0m \u001b[31m217.7 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m10.2/10.2 MB\u001b[0m \u001b[31m197.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.2/10.2 MB\u001b[0m \u001b[31m109.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25h"
- ]
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "from huggingface_hub import notebook_login\n",
- "\n",
- "notebook_login()"
- ],
- "metadata": {
- "id": "KWZQkbIOdEa-"
- },
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "source": [
- "We can initialize ShieldGemma 2 model and processor as follows."
- ],
- "metadata": {
- "id": "leosA0JsQD5K"
- }
- },
- {
- "cell_type": "code",
- "source": [
- "from transformers import AutoProcessor, ShieldGemma2ForImageClassification\n",
- "from PIL import Image\n",
- "import requests\n",
- "import torch\n",
- "model_id = \"google/shieldgemma-2-4b-it\"\n",
- "model = ShieldGemma2ForImageClassification.from_pretrained(model_id).to(\"cuda\")\n",
- "processor = AutoProcessor.from_pretrained(model_id)"
- ],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 208,
- "referenced_widgets": [
- "97375927970449739b877b97f0bc215b",
- "1bb0705b0c4c4ca0bb114587056e1087",
- "7ea5ee4d642e4b99bf9c6460b24f2250",
- "530a43846b9c4d21a1ffda8b1a7c39a0",
- "cfda0c5403c740128b6ed8165b294d4d",
- "a327df45929941ff8d506c7f6c134c3d",
- "6acb4a97db60439e82ef736e0bf25378",
- "a809cd83602a46aea3fb52fcf798b328",
- "793bcab23bc547e7a39a3825a3cfc00b",
- "c3b97f01108543188b3acc4b5c5951e4",
- "6e2b2a35e144470aaf9bb152ba622db0"
- ]
- },
- "id": "5Jhkj54b89Ok",
- "outputId": "8da91fb5-4cb8-46a1-8959-ae5975a8de1a"
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/usr/local/lib/python3.11/dist-packages/huggingface_hub/utils/_auth.py:94: UserWarning: \n",
- "The secret `HF_TOKEN` does not exist in your Colab secrets.\n",
- "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n",
- "You will be able to reuse this secret in all of your notebooks.\n",
- "Please note that authentication is recommended but still optional to access public models or datasets.\n",
- " warnings.warn(\n"
- ]
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Loading checkpoint shards: 0%| | 0/2 [00:00, ?it/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "97375927970449739b877b97f0bc215b"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.50, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.\n",
- "Some kwargs in processor config are unused and will not have any effect: policy_definitions. \n"
- ]
- }
- ]
- },
- {
- "cell_type": "markdown",
- "source": [
- "**Note:** This model has image and text input and probability output so it has an image classification head as abstraction, but it's actually a vision language model. So if you want to use it with pipeline, use \"image-text-to-text\" pipeline and not \"image-classification\" pipeline."
- ],
- "metadata": {
- "id": "U1rLMkkLQWAk"
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "ShieldGemma 2 takes two inputs: image, and policies. Policies are essentially dictionary of policy name and policy description.\n",
- "\n",
- "Here's three policies as example:\n",
- "- **Sexually Explicit content**\n",
- "\"No Sexually Explicit content\": The image shall not contain content that depicts explicit or graphic sexual acts (e.g., pornography, erotic. nudity, depictions of rape or sexual assault).\n",
- "- **Dangerous content:**\n",
- "\"No Dangerous content\": The image shall not contain content that facilitates or encourages activities that could cause real-world harm (e.g., building firearms and explosive devices, promotion of terrorism, instructions for suicide).\n",
- "- **Violent content**:\n",
- "\"No Violence/Gore content\": The image shall not contain content that depicts shocking, sensational, or gratuitous violence (e.g., excessive blood and gore, gratuitous violence against animals, extreme injury or moment of death).\n",
+ "Here's three policies as example:\n",
+ "- **Sexually Explicit content**\n",
+ "\"No Sexually Explicit content\": The image shall not contain content that depicts explicit or graphic sexual acts (e.g., pornography, erotic. nudity, depictions of rape or sexual assault).\n",
+ "- **Dangerous content:**\n",
+ "\"No Dangerous content\": The image shall not contain content that facilitates or encourages activities that could cause real-world harm (e.g., building firearms and explosive devices, promotion of terrorism, instructions for suicide).\n",
+ "- **Violent content**:\n",
+ "\"No Violence/Gore content\": The image shall not contain content that depicts shocking, sensational, or gratuitous violence (e.g., excessive blood and gore, gratuitous violence against animals, extreme injury or moment of death).\n",
"\n",
"We need to pack the inputs as follows. We will also pass in names for policies separately to processor."
- ],
- "metadata": {
- "id": "1GLRq0b-Qrxn"
- }
+ ]
},
{
"cell_type": "code",
@@ -561,51 +197,40 @@
},
{
"cell_type": "markdown",
- "source": [
- "In this notebook we will see a negative example, in the sense that we will not provide an unsafe example but a random image of a knife among fruits."
- ],
"metadata": {
"id": "_etOt6yeTCJo"
- }
+ },
+ "source": [
+ "In this notebook we will see a negative example, in the sense that we will not provide an unsafe example but a random image of a knife among fruits."
+ ]
},
{
"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "oTOXRcGtUDpw"
+ },
+ "outputs": [],
"source": [
"from PIL import Image\n",
"import requests\n",
"\n",
"url = \"https://st2.depositphotos.com/1177973/7291/i/450/depositphotos_72910989-stock-photo-juicy-kiwi-fruit-with-knife.jpg\"\n",
"image = Image.open(requests.get(url, stream=True).raw)"
- ],
- "metadata": {
- "id": "oTOXRcGtUDpw"
- },
- "execution_count": null,
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
- "source": [
- "We can pass the custom policies, policies (policy names, i.e. keys in custom policies dict) and image, and then pass them to the model."
- ],
"metadata": {
"id": "jCCmSn04UT8-"
- }
+ },
+ "source": [
+ "We can pass the custom policies, policies (policy names, i.e. keys in custom policies dict) and image, and then pass them to the model."
+ ]
},
{
"cell_type": "code",
- "source": [
- "inputs = processor(\n",
- " images=[image],\n",
- " custom_policies=custom_policies,\n",
- " policies=policies,\n",
- " return_tensors=\"pt\",\n",
- " ).to(model.device)\n",
- "\n",
- "with torch.inference_mode():\n",
- " output = model(**inputs)\n",
- " print(output.probabilities)"
- ],
+ "execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -613,41 +238,42 @@
"id": "ZdKApmBZKNck",
"outputId": "386cdad5-024b-4c38-ec38-c2ee37ea242b"
},
- "execution_count": null,
"outputs": [
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
"tensor([[7.5839e-09, 1.0000e+00],\n",
" [3.3786e-14, 1.0000e+00],\n",
" [2.8943e-16, 1.0000e+00]], device='cuda:0')\n"
]
}
+ ],
+ "source": [
+ "inputs = processor(\n",
+ " images=[image],\n",
+ " custom_policies=custom_policies,\n",
+ " policies=policies,\n",
+ " return_tensors=\"pt\",\n",
+ " ).to(model.device)\n",
+ "\n",
+ "with torch.inference_mode():\n",
+ " output = model(**inputs)\n",
+ " print(output.probabilities)"
]
},
{
"cell_type": "markdown",
- "source": [
- "The outputs might look cryptic, but essentially they are probabilities for each policy existing vs not existing in the image (yes/no). We can postprocess them like below."
- ],
"metadata": {
"id": "WhIhgf4pUkua"
- }
+ },
+ "source": [
+ "The outputs might look cryptic, but essentially they are probabilities for each policy existing vs not existing in the image (yes/no). We can postprocess them like below."
+ ]
},
{
"cell_type": "code",
- "source": [
- "outs = {}\n",
- "for idx, policy in enumerate(output.probabilities.cpu()):\n",
- " yes_prob = policy[0]\n",
- " no_prob = policy[1]\n",
- "\n",
- " outs[f\"Yes for {policies[idx]}\"] = yes_prob\n",
- " outs[f\"No for {policies[idx]}\"] = no_prob\n",
- "\n",
- "print(outs)"
- ],
+ "execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -655,50 +281,39 @@
"id": "7KIJ1R6pUgpS",
"outputId": "ecf18d36-65ea-46b3-bc58-d0ec6a06b8ae"
},
- "execution_count": null,
"outputs": [
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
"{'Yes for Sexually Explicit content': tensor(7.5839e-09), 'No for Sexually Explicit content': tensor(1.), 'Yes for Dangerous content': tensor(3.3786e-14), 'No for Dangerous content': tensor(1.), 'Yes for Violent content': tensor(2.8943e-16), 'No for Violent content': tensor(1.)}\n"
]
}
+ ],
+ "source": [
+ "outs = {}\n",
+ "for idx, policy in enumerate(output.probabilities.cpu()):\n",
+ " yes_prob = policy[0]\n",
+ " no_prob = policy[1]\n",
+ "\n",
+ " outs[f\"Yes for {policies[idx]}\"] = yes_prob\n",
+ " outs[f\"No for {policies[idx]}\"] = no_prob\n",
+ "\n",
+ "print(outs)"
]
},
{
"cell_type": "markdown",
- "source": [
- "### Visualize Outputs"
- ],
"metadata": {
"id": "u8NTQqh3WMSi"
- }
+ },
+ "source": [
+ "### Visualize Outputs"
+ ]
},
{
"cell_type": "code",
- "source": [
- "import matplotlib.pyplot as plt\n",
- "\n",
- "colors = ['#4CAF50', '#FFC107'] * (len(outs) // 2)\n",
- "\n",
- "plt.figure(figsize=(12, 7))\n",
- "\n",
- "plt.bar(outs.keys(), outs.values(), color=colors, width=0.7, edgecolor='black')\n",
- "\n",
- "plt.title(\"ShieldGemma 2 Policy Classification Probabilities\", fontsize=14, pad=20)\n",
- "plt.xlabel(\"Policies\", fontsize=14, labelpad=15)\n",
- "plt.ylabel(\"Probability\", fontsize=14, labelpad=15)\n",
- "\n",
- "plt.xticks(rotation=45, ha='right', fontsize=12)\n",
- "plt.yticks(fontsize=12)\n",
- "\n",
- "plt.grid(axis='y', linestyle='--', alpha=0.5)\n",
- "\n",
- "plt.tight_layout()\n",
- "\n",
- "plt.show()\n"
- ],
+ "execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
@@ -707,37 +322,422 @@
"id": "MIxoOFWXU5Do",
"outputId": "38ef8c1c-e11d-4c54-881f-ee4a973fe718"
},
- "execution_count": null,
"outputs": [
{
- "output_type": "display_data",
"data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABJMAAAKsCAYAAABYj/zGAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4U+X7x/FPkm66SylDBFcLyhBkqSAyZAkKylIBRXCLDJUh+nWBAxURxIHKEFSWoIKICCoqG0VALYggQ1bppnvl9we/xKZJ21Nok0rfr+viuuh5znlyn5Mnd07unPPEZLVarQIAAAAAAAAMMHs6AAAAAAAAAPx3UEwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAJSrjh07qmPHjobXnzFjhmJiYrRly5ZzetyYmBgNHjzY7Y+L/7bx48crJiZG//zzj33ZP//8o5iYGI0fP96DkZ29yjq2i8sNp06d0rhx49S+fXs1bNhQMTExSk1N1bJlyxQTE6Nly5Z5IFpnrsZKVTV48GDFxMRUWP9nM4ZdvQcU109Z3y+ksr+3AcD5zsvTAQAAKreMjAx9+OGH+vrrr3Xw4EHl5uYqPDxcF1xwga666ir169dPF154oafDLHexsbH65JNPtH37dp04cUI5OTkKCQlRdHS02rVrp969eys8PNzTYVZaJ0+e1FdffaUffvhBBw4cUHx8vEJCQtS8eXMNHz5cTZs2NdzXjBkz9Oabbzos8/f3V926ddWlSxcNGzZMAQEB5b0Llcpvv/2mjz/+WNu3b1dcXJwKCgpUo0YNNWvWTL1799a1117r6RDP2vjx47VhwwbdeOONqlevnkwmk3x9fd0ex7JlyzRhwgS9+OKLuuWWW9z++GU1fvx4LV++3GFZtWrVdNFFF6lXr16644475O3t7aHo/ntsx3PdunW64IILPB0OAFR6FJMAAMVKS0vT7bffrr1796pevXrq1auXwsLClJSUpF27dmnWrFm68MILz6mYdMcdd6hHjx6qXbt2OUZ+9goKCvTKK69o9uzZslgsatGiha699loFBAQoISFBv/76q15++WXNmDFDq1evVlRUlKdDrpTmz5+v9957TxdeeKGuvfZahYeH69ChQ1q7dq3Wrl2r1157TT169ChTn127dtVll10m6czVLN9++63efPNNfffdd1q4cKF8fHzKJfaoqCitWrVKQUFB5dLfuSgoKNDLL7+suXPnysvLS23atFHHjh3l5eWlI0eOaP369friiy/0yCOP6KGHHvJ0uCWaO3eu07KcnBxt3LhR11xzjV577TWHthtuuEFNmzZVjRo13BRhycaMGaN77rmn0r3m+/btq5o1a8pqter48eP65ptv9OKLL2rz5s165513PB2e26xatUr+/v7lvq6Nq/ELAFUZxSQAQLHmzZunvXv3ql+/fnr++edlMpkc2o8cOaKcnJxzeozw8PBKdYXP66+/rtmzZ+uKK67Q66+/rnr16jmt8/vvv+vVV19VVlaWByL8b2jSpInmz5+vVq1aOSzfvn277rrrLj3zzDPq3LlzmQpAXbt21Y033mj/e+zYserXr59+//13rVy5styuJvH29tYll1xSLn2dq2nTpmnu3Llq2LChpk+f7lS4zcrK0oIFC5ScnOyZAMvAVdE5Pj7efpVVUUFBQZWioGdTo0aNSlPYKqxfv3668sor7X+PGjVKffr00XfffactW7aodevWngvOjcrymj2b1/f5eAUuAJwL5kwCABTr119/lXTm6qGihSRJqlu3brEn5enp6Zo0aZLatm2rRo0aqVevXlq9erXTeiXNjbFnzx6NHj3a3keHDh30/PPPKykpyfA+HD9+XGPGjFGrVq3UrFkzDRo0SNu2bXO57t9//60PPvhA4eHhev/9910WkiTpiiuu0Jw5c1SnTp2zjrnwvDz79+/XfffdpxYtWqhly5YaM2aMEhMTJUk7duzQnXfeqebNm6tly5aaOHGiMjIyHPrasmWLYmJiNGPGDP3yyy8aPHiwmjVrpjZt2uiZZ56xF72+//57DRgwQFdeeaWuueYaTZkyRXl5eQ59nT59WrNmzdKgQYPs+9C2bVuNHTtWhw8fNnbQJXXp0sWpkCRJLVq0UOvWrZWSkqK9e/ca7s+VwMBA9enTR5K0e/du+/KjR4/qiSeeULt27dSoUSNdd911euKJJ3Ts2DFD/ZY0Z1JaWprefPNN9erVS02bNtVVV12l3r17a9q0acrNzdXp06d15ZVXOhS9CisoKFDHjh3VsmXLUouRhw4d0vvvv6/Q0FC9//77Lj/M+vn5afjw4XrkkUdK3a+lS5fqgQceUMeOHdW4cWO1atVKw4YN0+bNm12u//XXX2vQoEG6+uqr1bhxY7Vt21Z33XWXvv76a4f1Nm/erOHDh9vHyzXXXKPbb79dixYtcliv6JwzgwcPVocOHSRJy5cvV0xMjMNxL2nOpCNHjuipp55Sx44d1ahRI1199dUaPHiww7o5OTmaP3++hg0bpvbt29vXe/jhh/XHH3849Dd+/HhNmDBBkjRhwgR7LIXnBSppzqRPP/1U/fr1U7NmzdSsWTP169fPZdyFX6u7d+/W0KFD1axZM1111VV66KGHymU+pqioKN1www2S/n1dFM6zy5YtU58+fdS0aVOHeYPO5nWTnZ2tV199Vddff70aN26s7t27a/78+bJarQ7rnUteWbJkiXr16qXGjRurXbt2euGFF5SWlua0XlnmQSq6bseOHe23DHbq1Mn+3Bddx9WcSVarVUuXLtXAgQPVvHlzNW3aVLfccouWLl3qtG52drZmz56tm266SVdddZWuvPJKdezYUSNHjtSePXsMxQ4AlQVXJgEAihUaGirpTJGlYcOGhrfLzc3VsGHDlJKSoq5duyozM1OrVq3SqFGj9P7776tt27al9rFu3TqNGjVKZrNZnTp1Us2aNbV//34tWLBAP/30kxYvXqyQkJAS+4iLi9OAAQN08uRJtW3bVldccYX279+voUOHuvy2/rPPPlN+fr4GDBhg6GopLy/Ht9Gzifmff/7RwIED1ahRI/Xr10+//fabvvzySx0/flyPPvqohg0bpmuuuUYDBgzQli1btHTpUhUUFOjFF190imfnzp1677331LZtWw0cOFBbtmzRJ598orS0NHXs2FHjx49Xp06ddOWVV+r777/XBx98oICAAD388MP2Pvbv36/p06erdevWuuGGG+Tv768DBw5o5cqVWr9+vZYtW+ayiFYWtuNW9PidC1ux8++//9btt9+uxMREdejQQZdddpn27dunTz/9VN99950+/vhjXXTRRWf1GAkJCRo0aJAOHDighg0b6rbbblNBQYEOHDig999/X3fffbeCg4PVo0cPffrpp/rll1/UvHlzhz42bNigo0eP6o477pCfn1+Jj7ds2TLl5+dr4MCBql69eonrGrnC67nnnlODBg109dVXKzw8XCdPntTatWs1dOhQzZgxQ507d7av+/HHH+vZZ59VZGSkbrjhBoWGhurUqVPavXu3vvnmG3Xt2lXSmQLl/fffr+DgYHXq1EmRkZFKTEzUnj179Pnnn2vAgAHFxtOnTx81aNBAH374oRo0aGB//NJyzfbt23XfffcpPT1dbdu21Y033qiUlBTFxsbqww8/tF+hlpKSohdeeEEtWrRQ+/btFRwcrCNHjujbb7/VDz/8oAULFqhJkyaSpM6dOys1NVXr1q1Tp06dypTvJk2apPnz5ysqKkq33nqrJGnNmjWaMGGC/vjjDz355JNO2+zevVvvv/++WrdurYEDB+qPP/7Q2rVr9eeff2rlypXlNmdU0S8BPvjgA23ZskWdOnXStddeK4vFIunsXzcjR45UbGysunTpYt/vSZMm6ejRow7F2LPNK3PmzNHmzZvVvXt3tW/fXhs3btS8efO0c+dOLViwoNzmhBoyZIiWL1+uPXv2aMiQIQoODpakUnOd1WrVY489ppUrV6p+/frq2bOnfHx8tGHDBk2cOFH79+/XuHHj7OuPGzdOX331lWJiYnTLLbfIx8dHJ06c0JYtW7R79241aNCgXPYHANzCCgBAMdauXWuNjo62NmvWzPrSSy9Zf/zxR2tiYmKJ23To0MEaHR1tfeCBB6zZ2dn25Rs3brRGR0db7777bof1p0+fbo2OjrZu3rzZviwxMdHavHlza7t27az//POPw/orV660RkdHW5977jmH5dHR0dZBgwY5LBs3bpw1Ojra+tZbbzksX7hwoTU6OtrpcQcPHmyNjo62bty4scR9dKWsMR85csQew9y5c+3LCwoKrPfcc481Ojra2qJFC+s333xjb8vJybH26tXLevnll1tPnTplX75582Z7X67Wj4mJsbZu3dq6c+dOe9vp06etV199tbVVq1bWnJwc+/LU1FRrUlKS0/5t2rTJ2qBBA+vEiRPLfGwKO3r0qLVRo0bWa6+91pqXl2doG9sYWblypcPytLQ0a48ePazR0dHW5cuXW63Wf5/DhQsXOqy7YMECa3R0tHXIkCEOy21j5MiRI/Zltudm3LhxDuuOGDHCGh0dbZ06dapTjKdOnbLm5uZarVardefOndbo6Gjr+PHjndaz9REbG1vqfg8aNOisxqOr15TVarUePnzYad2TJ09a27Zta+3SpYvD8j59+livuOIKa3x8vNM2hXPAww8/XOz+FM0VHTp0sHbo0MFhWXHH2mq1Wj/99FNrdHS09dNPP7Uvy87OtrZr187aoEED6/r16522OX78uMO6J06ccFrnzz//tF555ZXWu+66q9THK8zVWNm6das1Ojra2r17d2tqaqp9eXJysrVLly7W6Oho67Zt2+zLC79Wv/zyS4f+H3/8cZfjvDi2eHbs2OGwPC4uznrNNddYo6OjrVu3brVarf+OiSuvvNK6Z88ep77K+rqxjc2uXbs67Hdqaqq1a9eu1piYGOuuXbsclpclr9jiveKKKxzGVkFBgXXMmDHW6Oho6wcffOCwjav3gOJeCyW9XxR+fgtzNX4XLVpkf60XzqPZ2dnW++67zxodHW3dvXu3/RjExMRY+/Tp45T78vLyrCkpKS4fFwAqK25zAwAUq1OnTho/frysVqtmz56tYcOGqU2bNrrhhhv03HPP6eDBg8VuO2HCBIerJa6++mrVqVNHv/32W6mP+/nnnystLU1jxoxx+mb4xhtv1BVXXKEvv/yyxD5ycnK0atUqRURE6O6773Zo69evn+rXr++0TXx8vCS5nBdly5YtmjFjhsO/wrfmnW3MF154oYYMGWL/22Qy2SembtiwocPVIt7e3uratavy8vL0119/OfXVunVrl+tbrVZ16NDBfhWGdOYWseuvv17Jyck6ceKEfXlQUJD9irTC2rRpo0svvVQbN250ajMqNzdXY8eOVU5Ojh577DH7VRFGff311/Zj//TTT6tbt27666+/1KhRI/Xo0UPHjh3Tli1bdOmll6p///4O29522226+OKLtXnzZh0/frzMsZ86dUpr1qzRhRde6HAll0316tXtV1o1adJEl19+uVavXu1wO05iYqK+/fZbNW7c2NAVCLbxWF4TPtetW9dpWY0aNdS1a1cdPHhQR48edWjz9vZ2efVYWFiY0zJXV9K4Wu9crV27VidPntRNN92k6667zqm9Zs2a9v/7+Pi4PHaXXXaZWrdurW3btik3N/ec4rHdGvXwww87zO8UEhJiHyeubndr2bKl0wT0tquaCt+yacSSJUs0Y8YMTZ8+XU888YR69Oih+Ph4derUSS1btnRYt3///g637kk6p9fNgw8+6LDfQUFBeuCBB2S1WvXZZ585LD+bvNK7d2+H14rJZNKYMWNksVicfsnOExYsWKCAgAA9/fTTDldJ+fj4aPTo0ZJkz/smk0lWq1W+vr4ymx0/glksFvvVUADwX8FtbgCAEg0dOlT9+vXTjz/+qB07dui3337Trl279NFHH2np0qV6/fXX1alTJ4dtgoODXX5wjYqKss/DVBLbOrt27dKRI0ec2rOzs5WUlKTExMRib0f7+++/lZ2drTZt2jh90DWbzWrevHmJxbCitm7d6vTz9A8//LD9drmzjTkmJsbpVhRbMcvVrTa2tri4OKe2ktZ31RYZGWnvq/DztWXLFs2bN0+7du1SUlKSw7xKZ3tbSUFBgcaPH69t27apf//+6t27d5n7+Prrr+3z9fj7+6tu3boaMGCA7r77bvn4+Cg2NlbSmQ/qRY+p2WxWy5YtdeDAAcXGxqpWrVpleuzffvtNVqtVrVu3NnQMBgwYoKefflorVqzQbbfdJunMbZS5ublOH9jd5ciRI3r33Xe1efNmnTx50mny/Li4OHshtEePHnrllVfUs2dP9ezZU23atNFVV12lwMBAh2169OihNWvWaMCAAerZs6euvvpqXXXVVRU2qb6t0HLttdcaWj82Nlbvv/++fv75Z8XHxzsVj5KSks5pUm3bmHN126xtmau5cK644gqnZbZCWGpqapliKDw3T0BAgC655BL16tVLd9xxh9O6hQvKNufyumnRooVTf7ZlReelOpu84qr/OnXqqGbNmtq3b59ycnLK7VccyyozM1N//vmnatSooffee8+p3bZ/Bw4ckHSmgN++fXutX79effr0Ubdu3dSqVSs1bty43G7XAwB3opgEAChVYGCgunfvru7du0s6M5nq1KlT9fHHH2vixIlq166dwwl9cb/A5OXlpYKCglIfLyUlRZL00UcflbheZmZmsW2nT5+WJEVERLhsd7U8IiJC+/fvV1xcnNPE4iNGjNCIESMknfmmecyYMeUSc9EP55LsV+yU1FZ04uyz6ct21Unhvr766iuNHj1aAQEBatu2rerUqSN/f3+ZTCYtX77c6eoVIwoKCvTEE09o5cqVuummm/Tss8+WuQ9Jmjp1arETW0uyXwVU3PxCtuKZq8l7S2MbT0avEurZs6defvllLVmyxF5MWrp0qQICAkrch8KqV6+uAwcO6OTJk7r44ovLHHNhhw4dUr9+/ZSWlqbWrVurQ4cOCgwMlNls1tatW7V161aH4tKwYcMUGhqqTz75RHPmzNHs2bPl5eWl9u3ba8KECfbiY/fu3eXt7a25c+dq4cKF+uijj2QymdS6dWuNHz++THMPGVGW5+GXX37RnXfeKelM8al+/foKCAiQyWTS2rVrtWfPnnP+Ncq0tDSZzWaXxbPq1avLZDK5HG8lvVaN5MjCFi1a5PBrbiVxlffO5XXjahvbssLrn21eKS5/V69eXUePHlV6errHikmpqamyWq06efKk0xcNhRX+wYQ33nhD77zzjlauXKnXX39d0pmxcMstt2jMmDHy9/ev8LgBoLxQTAIAlFlQUJD+97//af369Tp69Kj+/PNPNWrUqNz6t33QWrFihaKjo886RunMpMmuuFrevHlzbd26VVu2bNHVV19dpscrj5grgzfffFO+vr5atmyZ062Apd1a6EpBQYEmTJigzz77TD179tRLL73kdItHebE9B7bbw4o6deqUw3plYbsF5eTJk4Zj6dWrlxYtWqTY2FhlZGRo//796tevn6pVq2aoD9t43Lx5c5nHY1Fz585VSkqKpkyZoptvvtmh7X//+5+2bt3qsMxkMqlv377q27evkpKS9PPPP2vlypX66quvdOjQIX3xxRf24kfnzp3VuXNnpaWl6ZdfftE333yjpUuXavjw4frqq6/K9fYd2+vayPPwzjvvKCcnRx999JHTFS5GrpA0IjAwUAUFBUpMTHQqfCQkJMhqtZ7VeKsorn6V81xeN/Hx8apdu7bTsqLrn21eKS5/x8fHy2QyGX4tVQTbY19xxRUub2V0xd/fX6NHj9bo0aN15MgRbdmyRQsXLtSHH36o7OxsPffccxUZMgCUK+ZMAgCcFZPJVGHfotpuxTiXD3wXXXSRfH199dtvvyk7O9uhraCgQL/88ovTNr1795bZbNbixYuVmJjo9pgrg8OHD+uSSy5x+sAXFxdX5p8tL1xI6tGjh6ZMmVLmeZLKwnYVzPbt251+mtxqtWr79u0O65VFo0aNZDabtWXLFsPz7AwcOFCStHjxYvutSGW5xe2WW26RxWLRokWLSh2PpV1hY/v59aK3pFqtVu3YsaPEbcPCwtS5c2dNmzZNbdq00V9//aVDhw45rRcYGKjrrrtOzz//vPr06aP4+Hjt3LmzxL7LyvY627BhQ6nrHj58WKGhoU6FpMzMTKdbsCTZi5z5+fmG47GNpcLzp9nYCnSV/Re6zuV1Y2tztezyyy+3LzvbvOKq/6NHj+rEiRO67LLLyvWqJNvzb/TKsMDAQF1yySU6cOBAmW9NlM7MYda3b1/7vEvffvttmfsAAE+imAQAKNbChQu1a9cul21r167V/v37FRwcXO5X4tx6662qVq2aXn/9de3bt8+pPTMzs9SijY+Pj7p3766EhATNnj3boW3JkiUu50u66KKLNHz4cCUkJOiee+5x+YFZcj2nSXnEXBnUrl1bhw4dcrhKITs7W88880yZJiu23dr22WefqVu3bnrllVcqtJAknYm9devW2rdvn8M8MtKZW4H279+vNm3alHm+JOnMbTVdunTR4cOHXd7SkpCQ4HTr4eWXX67GjRtrxYoVWr16tWJiYlzOWVOcevXqafjw4UpKStLw4cOLnYtrzpw5mjFjRol92eZC+vnnnx2Wz5o1S3/++afT+lu2bHEqLOTm5tpv57TNQ7Zt2zaXxRdb8au8fuLeplOnTqpZs6a++OIL/fjjj07tha9YqlOnjlJSUhxej/n5+Xr55ZddFudsE0QXnpC+NH369JEkzZw50+G2rtOnT9vHiW2dyupcXjdvvfWW/dZD6cx+v/322zKZTA7zop1tXvnss88c5pyyWq2aOnWq8vPzy/24hoSESFKZJugfPHiwMjMz9eSTTzrczmZz5MgRe7EsMTHR5WstJSVFubm5HrtdDwDOFre5AQCK9cMPP+jpp59WvXr11Lx5c9WoUUMZGRmKjY3V9u3bZTab9fTTT5f7SXB4eLimTp2qkSNH6uabb1a7du108cUXKycnR0ePHtXWrVvVrFkzffDBByX28+ijj2rTpk2aNm2afv75Z11++eXav3+/1q9fr7Zt2+qnn35y2mb06NHKzc3VnDlz1L17d7Vo0UINGjSQv7+/EhIStHfvXu3atUsBAQEO39SXV8yeNnjwYD3//PPq3bu3unXrpry8PG3cuFFWq1UNGjRwOZmwKzNnztTy5csVEBCg+vXr6+2333Zap3PnzuU+p84zzzyj22+/XU899ZS+++47XXrppdq3b5++/fZbhYeH65lnnjnrvp9++mnt27dP77zzjn744Qe1adNGVqtVBw8e1E8//aSNGzc63dI1cOBATZw4UVLZrkqyGTVqlLKzszV37lx1795drVu3VnR0tLy8vPTPP/9o48aNSk5O1qhRo0rsZ+DAgVq2bJkeeeQRde/eXaGhofr111/1xx9/6Prrr9f333/vsP5DDz2kwMBANW3aVLVr17aPg7/++ktdu3a1F6cmTZqkuLg4XXXVVapTp45MJpN+/vln7dq1S1deeaWuuuqqMu9zSXx8fDRt2jQNHz5c99xzj9q1a6cGDRooLS1NsbGxysrKsv+K2KBBg/TTTz/p9ttvV/fu3eXj46OtW7fq5MmTatWqldOtfVdeeaX8/Pw0b948paSk2OdBevDBB4uNp2XLlho8eLDmz5+vnj17qkuXLrJarVqzZo1OnDihwYMHO/2iWmV0tq+b+vXr2/dbkn2/hw4dqsaNG9vXO9u80rZtWw0cOFA9evRQeHi4Nm3apN9++01XXnmlBg0aVK7HoE2bNpo9e7b+97//qUuXLvL391ft2rVL/LGAgQMHaufOnVq+fLl++eUXXXPNNapRo4YSEhJ04MAB7dy5U6+99pouuOACnTx50v7rdDExMYqKilJycrLWrVun3NxcDRs2rFz3BwAqGsUkAECxHnvsMTVv3lwbN27Utm3b7HNnREVFqU+fPho0aFC5zpVU2PXXX6/ly5frgw8+0KZNm7RhwwYFBAQoKipKt9xyi2666aZS+6hRo4YWLlyoV155RT/99JO2b9+uK664QnPmzNHmzZtdFpPMZrPGjx+vm266SQsXLtS2bdu0e/du5ebmKiQkRJdeeqnGjh2r3r17O82RUh4xe9odd9whLy8vLViwQIsXL1ZwcLDat2+vRx99VCNHjjTcj21C3YyMDL3zzjsu16lTp065F5Muvvhiffrpp3rzzTf1448/av369QoLC9Mtt9yihx9+2F4EORvh4eFavHixPvjgA61evVoLFiyQr6+vLrjgAt17770ub/u88cYb9eyzz8psNp/V8282mzVhwgT17NlTn3zyibZv367t27eroKBAkZGRatu2rW699VZdc801JfZz+eWX64MPPtC0adO0Zs0aWSwWNWvWTJ988om+/fZbp2LSmDFj9OOPP2r37t367rvv5O/vrwsvvFDPPPOM+vbta1/vvvvu05o1a/T777/rp59+kpeXl+rUqaPHHntMt99+e4VcjdasWTMtX75c7777rn766Sdt2rRJwcHBuuSSS+y3FkpShw4dNH36dL377rv64osv5OfnpzZt2mjmzJmaOXOmU7+hoaGaPn26ZsyYoSVLligrK0tSycUkSXryySfVsGFDffLJJ1q8eLEk6dJLL9UjjzyiW2+9tRz3vOKc7evmjTfe0PTp0/Xll18qPj5eF1xwgZ588kmnQs/Z5pWhQ4eqU6dOmjdvng4dOqSQkBANGTJEI0eOLPcvMdq3b6/HH39cS5Ys0Zw5c5Sbm6tWrVqVWEwymUx66aWXdN1112nJkiX6/vvvlZGRofDwcNWrV0/jxo2zz3dWp04djRgxQps3b7YXgcPCwnT55ZdryJAhuu6668p1fwCgopmsRa9hBgAAQLnYvXu3+vbtq5tvvllTpkzxdDgAAADlgjmTAAAAKojttsbbbrvNw5EAAACUH25zAwAAKEfHjh3TypUrtW/fPn311Vdq27atmjVr5umwAAAAyg3FJAAAgHJ05MgRvfbaawoICFCHDh30/PPPezokAACAcsWcSQAAAAAAADCMOZMAAAAAAABgGMUkAAAAAAAAGEYxCQAAAAAAAIZRTAIAAAAAAIBhFJMAAAAAAABgGMUkAAAAAAAAGEYxCQAAAAAAAIZRTAIAAAAAAIBhFJMAAAAAAABgGMUkAAAAAAAAGEYxCQAAAAAAAIZRTAIAAAAAAIBhFJMAAAAAAABgGMUkAAAAAAAAGEYxCQAAAAAAAIZRTAIAAAAAAIBhFJMAAAAAAABgGMUkAAAAAAAAGEYxCQAAAAAAAIZRTAIAAAAAAIBhFJMAAAAAAABgGMUkAAAAAAAAGObl6QDg2o4dO2S1WuXt7e3pUAAAAAAAwHkuNzdXJpNJzZo1K3VdrkyqpKxWq6xWq6fDgAFWq1U5OTk8X6i0GKOozBifqOwYo6jsGKOo7Bij/x1lqUNwZVIlZbsiqXHjxh6OBKXJyMhQbGysLr30UgUEBHg6HMAJYxSVGeMTlR1jFJUdYxSVHWP0v2P37t2G1+XKJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMUlSenq6pk+frmHDhqlVq1aKiYnRsmXLDG+fmpqqp556Sm3atNGVV16pwYMH6/fff6/AiAEAAAAAADyDYpKkpKQkzZw5UwcOHFBMTEyZti0oKNC9996rlStXatCgQXr88ceVmJiowYMH6+DBgxUTMAAAAAAAgId4eTqAyqBGjRr66aefFBkZqd27d6tv376Gt129erV27NihN954Q926dZMkde/eXV27dtWMGTP02muvVVTYAAAAAAAAbseVSZJ8fHwUGRl5Vtt+/fXXql69urp06WJfFh4eru7du2vdunXKyckprzABAAAAAAA8jmLSOYqNjdXll18us9nxUDZu3FiZmZn6+++/PRQZAAAAAABA+eM2t3N06tQptWjRwml5jRo1JElxcXFlnoepsNzcXIe/TSaTvLy8ZLValZeX57S+t7e3JCkvL09Wq9WhzWKxyGw2Kz8/XwUFBWXq18vLSyaTyWW/ZrNZFotFBQUFys/PLzamovtSkf2ey76WtV/berYYy/sY2uItLiZPHENbv+V1DIvu69kcQ1u/JR3Dov0ePnxYCQkJslgs9n6LMplM9mNYNF5bTJJcbmvrNz8/3ynec+nXbDbbj2HRfm3bWq1W+3HIzMzUP//8o7S0NAUFBZVbv672taKOYVn6jYiI0IUXXlhpcoTRfqtqjrD1bft/ZcoRRvotj/fAko6hp94DjZxH2HJo4f35L+QII/0WzocZGRn2HOrv71/qvpZn/nbHvhbt15ZDbfF6OkeUpd+qmiOK5tHS+nVXjihLv1X1s0bRPPpfyBFn029aWpqOHDnikEdL2ldbv5Upz9r6LWlfbf0WzqO2tv/SeYRRFJPOUVZWlnx8fJyW25ZlZ2efdd9Wq1WnTp1yWObv76+wsDDl5+c7tUlS7dq1JUnJyclOt9iFhoYqICBAWVlZSklJcWjz9fVVRESEy8eUpKioKFksFqWmpiorK8uhLTg4WIGBgcrOzlZSUpJDm7e3t/0Wwvj4eKcXT2RkpLy9vZWWlqaMjAyHtsDAQAUHBys3N9chyUpnXuhRUVGSpMTERKcXSEREhHx9fZWenq60tDSHtoCAAIWGhiovL89pX00mk2rVqiXpzDEs+uIKCwuTv7+/MjMzlZqaKunfF6Dtg3pBQYHLY1izZk2ZTCalpKQ4jYuQkBBVq1ZNWVlZSk5Odmjz8fFR9erVJcllvzVq1JCXl5dOnz6tzMxMh7agoCAFBQUpJydHiYmJDm1eXl72omdCQoJTAqpevbp8fHyUlpam9PR0h7Zq1aopJCSk1GOYlJTklIzDw8Pl5+enjIwMnT592qHNz89P4eHhxR7Dws9NSePbyDE8evSorm/fThmZZ/8aReUU4O+rH37coKuuukqS53OETWnju6rmCFtMycnJSk9PrzQ5orCS3gONHsPS3gNLOobx8fEObWazWTVr1pRU9jxbXucRf/zxBzn0PBXg76vv1/+oOnXqVIocUVnPIwrzdI6wxWvLo5UhR/BZo/TziN9++01tr72aPHoeKpxHJc/niLKcR+Tn58tisRjaT4pJ58jPz8/lvEi2Zb6+vmfdt8lkcprLyWQySTqT4Eqa5yk0NNTltwW2mIsWwGz9unpMSfbb+IKDg+1XNhRt8/X1LTEm25twYbaqcmBgoKpVq+ay38JvEq6Eh4c7LbPta7Vq1ezVbxvbvnp5eZV6DIvr19/f3/7cZmRkKD4+XoGBgfa4XfVre9yQkBCXFWnpzHNT3HMuyWW/tpiCgoLsMRTtt7R5wSIiIortNzAwUAEBAS77Le0YhoWFFdtvQECA/Pz8HNps+1rcMbQpbXwbOYb//POPMjKzteBJLzWsZxLOD7GHrBo0KdvhpM/TOaJov+SIf4WFhcnX11fx8fH2DyGVJUe42p+S3gNLO4alvQe6O8+e63mE1Wolh56HbDnUarUqMjKyUuSI4volR/x7DENDQx3yaGGeyhF81ih9fOfm5pJHz0NF86jk+RxRljxbtLBaEopJ5ygyMtJldT0uLk7Sv7e7nS3b5WdFmUymYtukfweWKxaLpdhq47n0a7v0rzie6Pdc9tVov7b1bH9zDCu+37Pd18L92vpoWM+k5tFMH3f+OPPNeOExUlXGd2kxVdYcYWsv/P9z7bc8ckR59iud/TH01HNT2nkEOfR89W8OLTw+OI+o2H6lc8sRxeXRc+mXzxrG+i2PfSWPnm9c51HbsuJUxvOI0jBqz1GDBg30xx9/OF3au2vXLvn7++uiiy7yUGQAAAAAAADlj2JSGcTFxWn//v0Oc2R069ZN8fHxWrNmjX1ZYmKiVq9erQ4dOricTwkAAAAAAOC/itvc/t+CBQuUmppqvz3tu+++04kTJyRJgwcPVlBQkKZOnarly5dr3bp1uuCCCyRJXbt21ZVXXqkJEybor7/+UlhYmD755BPl5+drxIgRHtsfAAAAAACAikAx6f/Nnj1bR48etf+9Zs0a+9VGN910k9NEWTYWi0WzZs3SlClTNH/+fGVnZ6tx48Z68cUXdfHFF7sldgAAAAAAAHehmPT/vv3221LXeemll/TSSy85LQ8JCdHkyZM1efLkiggNAAAAAACg0mDOJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJEk5OTl65ZVX1LZtWzVp0kT9+vXThg0bDG27ceNGDR48WK1bt1aLFi3Ut29fffbZZxUbMAAAAAAAgIdQTJI0fvx4zZ07V7169dLEiRNlsVh07733avv27SVut27dOt19993Kzc3ViBEjNHr0aPn5+WncuHGaO3eue4IHAAAAAABwIy9PB+Bpu3bt0pdffqmxY8dq2LBhkqTevXurZ8+eevXVV7Vw4cJit/3oo48UGRmpDz/8UD4+PpKkAQMGqHv37lq2bJnuuusud+wCAAAAAACA21T5K5NWr14ti8WiAQMG2Jf5+vqqb9++2rFjh44fP17stmlpaQoJCbEXkiTJy8tLYWFh8vPzq9C4AQAAAAAAPKHKF5NiY2NVv359BQYGOixv0qSJvb04rVq10r59+zRt2jQdOnRIhw8f1syZM/Xbb79p+PDhFRo3AAAAAACAJ1T529xOnTqlyMhIp+W2ZXFxccVu++CDD+qff/7RO++8o7fffluS5O/vr+nTp6tz587lEl9ubq7D3yaTSV5eXrJarcrLy3Na39vbW5KUl5cnq9Xq0GaxWGQ2m5Wfn6+CgoIy9evl5SWTyeSyX7PZLIvFooKCAuXn5xcbU9F9qch+z2Vfy9qvbT1bjOV9DG3xFheTJ46hrd/yOoZF9/VsjqGt35KOYeF+XfWP80fh59fTOcJov1U1R9j6tv2/suQIo/2Wx3tgScfQU++BpZ1HkEPPb3l5ecrNza0UOaIs/VbVHFE0j5bWrztyBJ81jB1DnL9seVTyfI4oa79GVfliUlZWlsNtaja+vr729uL4+Piofv366tq1q7p06aL8/HwtXrxYjz/+uObMmaMrr7zynGKzWq06deqUwzJ/f3+FhYUpPz/fqU2SateuLUlKTk5WTk6OQ1toaKgCAgKUlZWllJQUhzZfX19FRES4fExJioqKksViUWpqqtMxCQ4OVmBgoLKzs5WUlOTQ5u3tbS/MxcfHO714IiMj5e3trbS0NGVkZDi0BQYGKjg4WLm5uUpISHBos1gsioqKkiQlJiY6vUAiIiLk6+ur9PR0paWlObQFBAQoNDRUeXl5TvtqMplUq1YtSWeOYdEXV1hYmPz9/ZWZmanU1FRJ/74A09LSFBQUpIKCApfHsGbNmjKZTEpJSVF2drZDW0hIiKpVq6asrCwlJyc7tPn4+Kh69eqS5LLfGjVqyMvLS6dPn1ZmZqZDW1BQkIKCgpSTk6PExESHNi8vL9WoUUOSlJCQ4JSAqlevLh8fH6WlpSk9Pd2hrVq1agoJCSn1GCYlJTm9UYaHh8vPz08ZGRk6ffq0Q5ufn5/Cw8OLPYaFn5uSxreRY1h0rOL8UjjHeTpH2JQ2vqtqjrDFlJycrPT09EqTIwor6T3Q6DEs7T2wpGMYHx/v0GY2m1WzZk1JZc+z5XUeQQ49vyUlJenUqVOVIkdU1vOIwjydI2zx2vJoZcgRfNYo/Tyi6LHH+cWWRyXP54iynEfk5+fLYrEY2scqX0zy8/NzSoSS7CfyJc199Nxzz2nnzp1avny5zOYzdwx2795dPXv21OTJk7VkyZJzis1kMjldNWUymSSdSXCurqiyCQ0NdfltgXRmn4oW0Gz9unpMSfb9Cw4OVlBQkMs2X1/fEmOyvQkXZvs2PTAwUNWqVXPZb+E3CVfCw8Odltn2tVq1avL393dos+2rl5dXqcewuH79/f3tBceMjAzFx8fbb5U0m80u+7U9bkhIiMuKtHTmuSnuOZfksl9bTEFBQU63a9r69fHxKXFfIyIiiu03MDBQAQEBLvst7RiGhYUV229AQIDT68u2r8UdQ5vSxreRY+gqNpw/QkJC7P/3dI4o2i854l9hYWHy9fVVfHy8/UNIZckRrvanpPfA0o5hae+B7s6z53oeQQ49v4WFhSkyMrJS5Iji+iVH/HsMQ0NDHfJoYZ7KEXzWKH18F91PnF9seVTyfI4oS54tWlgtSZUvJkVGRurkyZNOy21VRFslsKicnBx9+umnGj58uP2Jks4ko3bt2umjjz5STk6Oy6ueysJ2+VlRJpOp2Dbp34HlisViKbbaeC79ms1mh2NRlCf6PZd9NdqvbT3b3xzDiu/3bPe1cL8l9YH/vsLPb1UZ36XFVFlzhK298P/Ptd/yyBHl2a909sfQU89NaecR5NDzm5eXl8P44DyiYvuVzi1HFJdHz6VfPmsY67ei9hX/fUXzqG1ZcSrjeURpqvwE3A0aNNDBgwedLk/cuXOnJKlhw4Yut0tOTlZeXp7L+w/z8vJUUFDgdLkvAAAAAADAf12VLyZ169ZN+fn5WrRokX1ZTk6Oli1bpqZNm9rvaT127Jj2799vXyciIkLBwcH65ptvHG6TS09P13fffaeLL764xFvkAAAAAAAA/ouq/LV1TZs2Vbdu3TR16lQlJCSoXr16Wr58uY4eParJkyfb1xs3bpy2bt2qvXv3SjpzKdndd9+tadOmacCAAbr55ptVUFCgpUuX6sSJE3rllVc8tUsAAAAAAAAVpsoXkyRpypQpmjZtmr744gulpKQoJiZG77zzjlq2bFnidg888IAuuOACffjhh5o5c6ZycnIUExOj6dOnq2vXrm6KHgAAAAAAwH0oJunMLwOMGzdO48aNK3ad+fPnu1zeq1cv9erVq6JCAwAAAAAAqFSq/JxJAAAAAAAAMI5iEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMMztxaRZs2YpISHB3Q8LAAAAAACAcuD2YtLUqVPVvn17PfLII/rxxx/d/fAAAAAAAAA4B24vJk2aNElXXHGF1qxZo3vvvVcdO3bUzJkzdeLECXeHAgAAAAAAgDJyezGpb9++WrRokVauXKnBgwcrIyNDM2bMUKdOnXT//fdr3bp1KigocHdYAAAAAAAAMMBjE3BfeumleuKJJ/Tjjz9q6tSpatWqldavX6+HH35Y7du31+uvv64jR454KjwAAAAAAAC44PFfc/P29laPHj00Z84cffzxx4qMjNSpU6f07rvvqmvXrrrnnnu0c+dOT4cJAAAAAAAASV6eDsBqteqHH37Q4sWLtX79euXl5al27dq6+eab9ccff+iHH37Qhg0b9MILL6h3796eDhcAAAAAAKBK81gx6dixY1q6dKmWLVumkydPymw2q3379howYICuu+46mUwmSdJff/2l++67TzNnzqSYBAAAAAAA4GFuLyatXr1aS5Ys0aZNm1RQUKCoqCg99NBD6tevn6KiopzWv/TSS3XzzTfr3XffdXeoAAAAAAAAKMLtxaRRo0bJbDarbdu2GjhwoK6//nqZzSVP3XTxxRerefPmbooQAAAAAAAAxXF7Men+++9X//79Vbt2bcPb9OzZUz179qzAqAAAAAAAAGCE23/N7dprry11nePHj2vbtm1uiAYAAAAAAABl4fZi0pAhQ7Rs2bIS1/nss880ZMgQN0UEAAAAAAAAo9xeTLJaraWuU1BQYP81NwAAAAAAAFQebi8mGXHo0CEFBQV5OgwAAAAAAAAU4ZYJuCdMmODw97p163T06FGn9QoKCnT8+HFt375d1113nTtCAwAAAAAAQBm4pZi0fPly+/9NJpNiY2MVGxvrcl2TyaTGjRs7FaAqUk5Ojt544w19/vnnSk1NVUxMjEaNGmVosnBJWrVqlebNm6e9e/fKy8tLl156qUaOHKmrr766giMHAAAAAABwL7cUk9atWyfpzHxJnTt31p133ulygm2LxaLg4GAFBAS4Iyy78ePH6+uvv9aQIUNUv359LV++XPfee6/mzZunFi1alLjtjBkzNHPmTHXt2lV9+vRRXl6e/vzzT508edJN0QMAAAAAALiPW4pJderUsf//xRdfVMOGDR2WedKuXbv05ZdfauzYsRo2bJgkqXfv3urZs6deffVVLVy4sNhtf/31V82cOVPjx4/XXXfd5aaIAQAAAAAAPMftE3D36dNHDRo0cPfDFmv16tWyWCwaMGCAfZmvr6/69u2rHTt26Pjx48VuO2/ePFWvXl1DhgyR1WpVenq6O0IGAAAAAADwmAq/Mmnbtm2SpCZNmsjX19f+txEtW7asqLDsYmNjVb9+fQUGBjosb9Kkib29Vq1aLrfdtGmTmjVrpg8//FBvv/22kpOTFRkZqfvvv1+DBg2q8NgBAAAAAADcrcKLSYMHD5bJZNKqVat00UUX2f82orhJusvTqVOnFBkZ6bTctiwuLs7ldikpKUpKStIvv/yizZs36+GHH1atWrW0bNkyPf/88/Ly8tLAgQPPOb7c3FyHv00mk7y8vGS1WpWXl+e0vre3tyQpLy9PVqvVoc1ischsNis/P18FBQVl6tfLy0smk8llv2azWRaLRQUFBcrPzy82pqL7UpH9nsu+lrVf23q2GMv7GNriLS4mTxxDW7/ldQyL7uvZHENbvyUdw8L9uuof54/Cz6+nc4TRfqtqjrD1bft/ZckRRvstj/fAko6hp94DSzuPIIee3/Ly8pSbm1spckRZ+q2qOaJoHi2tX3fkCD5rGDuGOH/Z8qjk+RxR1n6NqvBi0kMPPSSTyaSwsDCHvyuLrKws+fj4OC339fW1t7uSkZEhSUpOTtbrr7+uHj16SJK6deumXr166e233z7nYpLVatWpU6cclvn7+yssLEz5+flObZJUu3Zte1w5OTkObaGhoQoICFBWVpZSUlIc2nx9fRUREeHyMSUpKipKFotFqampTsckODhYgYGBys7OVlJSkkObt7e3vTAXHx/v9OKJjIyUt7e30tLS7MfUJjAwUMHBwcrNzVVCQoJDm8ViUVRUlCQpMTHR6QUSEREhX19fpaenKy0tzaEtICBAoaGhysvLc9pXk8lkvxItOTnZ6cUVFhYmf39/ZWZmKjU1VdK/L8C0tDQFBQWpoKDA5TGsWbOmTCaTUlJSlJ2d7dAWEhKiatWqKSsrS8nJyQ5tPj4+ql69uiS57LdGjRry8vLS6dOnlZmZ6dAWFBSkoKAg5eTkKDEx0aHNy8tLNWrUkCQlJCQ4JaDq1avLx8dHaWlpTrdwVqtWTSEhIaUew6SkJKc3yvDwcPn5+SkjI0OnT592aPPz81N4eHixx7Dwc1PS+DZyDIuOVZxfCuc4T+cIm9LGd1XNEbaYkpOTlZ6eXmlyRGElvQcaPYalvQeWdAzj4+Md2sxms2rWrCmp7Hm2vM4jyKHnt6SkJJ06dapS5IjKeh5RmKdzhC1eWx6tDDmCzxqln0cUPfY4v9jyqOT5HFGW84j8/HxZLBZD+1jhxaQRI0aU+Len+fn5OSVCSfYTeT8/P5fb2YpN3t7e6tq1q3252WxW9+7dNWPGDB07dsyecM+GyWRyumrKVoizWCwur6iyCQ0NdfltgXRmn4oW0Gz9unpM6cx+SWeSeVBQkMs2X1/fEmOyvQkXZvs2PTAwUNWqVXPZb+E3CVfCw8Odltn2tVq1avL393dos+2rl5dXqcewuH79/f3tYyAjI0Px8fH2WyXNZrPLfm2PGxIS4rIiLZ15bop7ziW57NcWU1BQkNPtmrZ+fXx8StzXiIiIYvsNDAx0+oVFW7+lHUNbEdlVvwEBAU6vL9u+FncMbUob30aOoavYcP4ICQmx/9/TOaJov+SIf4WFhcnX11fx8fH2DyGVJUe42p+S3gNLO4alvQe6O8+e63kEOfT8FhYWpsjIyEqRI4rrlxzx7zEMDQ11yKOFeSpH8Fmj9PFddD9xfrHlUcnzOaIsebZoYbUkbvk1t8osMjJSJ0+edFpuqyLaKoFFhYaGytfXV8HBwU6VO9sbampq6jkVk6R/Lz8rymQyFdsm/TuwXLFYLMVWG8+lX7PZbB+0rnii33PZV6P92taz/c0xrPh+z3ZfC/dbUh/47yv8/FaV8V1aTJU1R9jaC///XPstjxxRnv1KZ38MPfXclHYeQQ49v3l5eTmMD84jKrZf6dxyRHF59Fz65bOGsX4ral/x31c0j9qWFacynkeUxu2/5lbZNGjQQAcPHnS6PHHnzp2SpIYNG7rczmw2q2HDhkpMTHS6ssk2zxLf2gEAAAAAgPNNhZdDhwwZclbbmUwmzZs3r5yjcdatWzfNnj1bixYt0rBhwyRJOTk5WrZsmZo2bWq/p/XYsWPKzMzUJZdcYt+2e/fu+vXXX/XZZ5+pf//+ks7cHrdixQpdeuml9vtsAQAAAAAAzhcVXkzaunXrWW3nrkm6mzZtqm7dumnq1KlKSEhQvXr1tHz5ch09elSTJ0+2rzdu3Dht3bpVe/futS8bOHCgli5dqueee05///23ateurc8//1zHjh3T22+/7Zb4AQAAAAAA3KnCi0l79uyp6Ic4Z1OmTNG0adP0xRdfKCUlRTExMXrnnXfUsmXLErfz8/PTvHnz9Morr2jZsmXKyMhQw4YN9e6776pdu3Zuih4AAAAAAMB9mPVLZ34ZYNy4cRo3blyx68yfP9/l8oiICL300ksVFRoAAAAAAEClUuUn4AYAAAAAAIBxFX5l0rZt2yRJTZo0ka+vr/1vI0q7zQwAAAAAAADuVeHFpMGDB8tkMmnVqlW66KKL7H8bERsbW8HRAQAAAAAAoCwqvJj00EMPyWQyKSwszOFvAAAAAAAA/PdUeDFpxIgRJf4NAAAAAACA/w4m4AYAAAAAAIBhFX5lUnFycnK0fv16/fHHHzp9+rSCgoJ0+eWXq3379vLx8fFUWAAAAAAAACiBR4pJ69at0//+9z8lJibKarXal5tMJkVEROi5555Tx44dPREaAAAAAAAASuD2YtKmTZv0yCOPyGw269Zbb1WLFi0UERGhhIQEbdu2TV988YVGjBih999/X1dffbW7wwMAAAAAAEAJ3F5Mmj59unx9fbVw4UJFR0c7tPXu3VuDBw/WbbfdphkzZlBMAgAAAAAAqGTcPgF3bGysevTo4VRIsmnQoIG6d++uP/74w82RAQAAAAAAoDRuLyb5+fkpPDy8xHUiIiLk5+fnpogAAAAAAABglNuLSddcc402btxY4jobN27Utdde66aIAAAAAAAAYJTbi0njxo1TYmKixo4dq+PHjzu0HT9+XI8//riSkpI0duxYd4cGAAAAAACAUlT4BNxDhgxxWhYcHKwVK1Zo1apVqlWrlv3X3I4fP678/HzFxMRo7NixmjdvXkWHBwAAAAAAgDKo8GLS1q1bi23Ly8vTkSNHdOTIEYfle/bskclkqujQAAAAAAAAUEYVXkzas2dPRT8EAAAAAAAA3MTtcyYBAAAAAADgv4tiEgAAAAAAAAyr8NvcinPixAlt3rxZcXFxysnJcWo3mUx66KGHPBAZAAAAAAAAiuORYtLLL7+s+fPnKz8/377MarXaJ922/Z9iEgAAAAAAQOXi9tvcFi9erDlz5qh169aaPn26rFarevfuralTp2rgwIGyWCzq1q2b5s2b5+7QAAAAAAAAUAq3X5m0aNEi1alTR++9957M5jO1rDp16qhHjx7q0aOHunfvrrvvvlvdunVzd2gAAAAAAAAohduvTDpw4IDatWtnLyRJcrjdrVWrVmrfvr1mz57t7tAAAAAAAABQCo/8mltwcLD9//7+/kpOTnZov+iii7Rv3z43RwUAAAAAAIDSuL2YFBUVpRMnTtj/vvDCC7Vz506Hdfbt26eAgAB3hwYAAAAAAIBSuL2Y1Lx5c4fiUadOnRQbG6v//e9/+v777/Xaa6/phx9+UIsWLdwdGgAAAAAAAErh9gm4b775ZsXFxeno0aOqU6eOhg0bpu+//16LFy/WkiVLZLVaVadOHY0dO9bdoQEAAAAAAKAUbi8mtW7dWq1bt7b/Xa1aNS1atEjr1q3T4cOHVadOHXXo0IHb3AAAAAAAACohtxeTXPH29la3bt08HQYAAAAAAABK4dFiUlJSkvbs2aO0tDQFBgaqQYMGCgsL82RIAAAAAAAAKIFHikn//POPJk+erPXr18tqtdqXm0wmXX/99XriiSd0wQUXeCI0AAAAAAAAlMDtxaTDhw/rtttuU0JCgurVq6fmzZurevXqio+P144dO/Ttt99q586dWrhwoerWrevu8AAAAAAAAFACtxeTXn31VSUmJurZZ59V//79ZTKZ7G1Wq1WLFi3Ss88+q1deeUXTp093d3gAAAAAAAAogduLSZs2bVLHjh01YMAApzaTyaSBAwdq/fr12rRpk7tDAwAAAAAAQCnM7n7A/Px8XXrppSWuEx0drfz8fDdFBAAAAAAAAKPcXky64oor9Ndff5W4zr59+9SoUSM3RQQAAAAAAACj3F5MGjVqlH744QctWbLEZfuiRYv0008/adSoUe4NDAAAAAAAAKWq8DmT3nzzTadlrVu31v/+9z/Nnj3b4dfcfvnlFx08eFBt27bVpk2b1Lx584oODwAAAAAAAGXgkWKSzd9//62///7bafmPP/6on376SQ899FBFhgYAAAAAAIAyqvBi0ocffljRDwEAAAAAAAA3qfBiUqtWrSr6IQAAAAAAAOAmbp+AGwAAAAAAAP9dFX5lUnF+/vlnLV++XLGxsUpLS1NgYKAuv/xy3XzzzWrRooWnwgIAAAAAAEAJPFJMeuGFFzR//nxZrVZJkslkktVq1e+//66lS5dqyJAhmjBhgidCAwAAAAAAQAncXkxavny5PvzwQ9WvX18PP/ywWrdurerVqyshIUFbtmzRm2++qQ8//FANGzZU79693R0eAAAAAAAASuD2OZM++eQT1axZU0uWLFHPnj0VGRkpk8mk6tWr68Ybb9TixYsVFRWljz/+2N2hAQAAAAAAoBRuLybt27dPXbp0UVBQkMv2oKAgdenSRfv27XNzZAAAAAAAAChNpfw1N5PJ5OkQAAAAAAAA4ILbi0mXXXaZ1qxZo/T0dJftaWlpWrNmjS677DI3RwYAAAAAAIDSuL2YNGDAAJ04cUIDBw7U119/rcTERElSYmKiVq9erdtuu00nTpzQbbfd5u7QAAAAAAAAUAq3/5rbrbfeqtjYWC1YsECjRo2SJJnNZhUUFEiSrFarBg0apD59+rg7NAAAAAAAAJTC7cUkSXryySfVrVs3LVu2THv27FFaWpoCAwPVsGFD9enTRy1atPBEWAAAAAAAACiF24tJ27ZtU2BgoFq0aEHRCAAAAAAA4D/G7XMmDRkyRIsWLXL3wwIAAAAAAKAcuL2YFBERIV9fX3c/LAAAAAAAAMqB24tJ11xzjbZu3Sqr1eruhy5WTk6OXnnlFbVt21ZNmjRRv379tGHDhjL3M3ToUMXExOi5556rgCgBAAAAAAA8z+3FpEcffVTJycl66qmnlJyc7O6Hd2n8+PGaO3euevXqpYkTJ8pisejee+/V9u3bDfexZs0a/frrrxUXJAAAAAAAQCXg9gm4H3/8cQUFBenTTz/VF198oQsuuEAREREymUwO65lMJs2bN6/C49m1a5e+/PJLjR07VsOGDZMk9e7dWz179tSrr76qhQsXltpHdna2XnrpJQ0fPlzTp0+v6JABAAAAAAA8xu3FpK1bt9r/n5OTowMHDujAgQNO6xUtLlWU1atXy2KxaMCAAfZlvr6+6tu3r6ZOnarjx4+rVq1aJfbx3nvvyWq1atiwYRSTAAAAAADAec3txaQ9e/a4+yFLFBsbq/r16yswMNBheZMmTeztJRWTjh07pvfee08vvPCC/Pz8KjRWAAAAAAAAT3NbMWnHjh16/fXXtXv3bpnNZjVp0kSjR4+2F2085dSpU4qMjHRablsWFxdX4vYvvfSSGjZsqBtvvLFC4svNzXX422QyycvLS1arVXl5eU7re3t7S5Ly8vKcJjm3WCwym83Kz89XQUFBmfr18vKSyWRy2a/ZbJbFYlFBQYHy8/OLjanovlRkv+eyr2Xt17aeLcbyPoa2eIuLyRPH0NZveR3Dovt6NsfQ1m9Jx7Bwv676x/mj8PPr6RxhtN+qmiNsfdv+X1lyhNF+y+M9sKRj6Kn3wNLOI8ih57e8vDzl5uZWihxRln6rao4omkdL69cdOYLPGsaOIc5ftjwqeT5HlLVfo9xSTNq7d6/uuusuZWdn25dt2rRJO3bs0JIlS3TZZZe5IwyXsrKy5OPj47Tc19fX3l6czZs3a82aNVq8eHGFxGa1WnXq1CmHZf7+/goLC1N+fr5TmyTVrl1bkpScnKycnByHttDQUAUEBCgrK0spKSkObb6+voqIiHD5mJIUFRUli8Wi1NRUp2MSHByswMBAZWdnKykpyaHN29vbXpiLj493evFERkbK29tbaWlpysjIcGgLDAxUcHCwcnNzlZCQ4NBmsVgUFRUlSUpMTHR6gURERMjX11fp6elKS0tzaAsICFBoaKjy8vKc9tVkMtmvREtOTnZ6cYWFhcnf31+ZmZlKTU2V9O8LMC0tTUFBQSooKHB5DGvWrCmTyaSUlBSH14IkhYSEqFq1asrKynKamN7Hx0fVq1eXJJf91qhRQ15eXjp9+rQyMzMd2oKCghQUFKScnBwlJiY6tHl5ealGjRqSpISEBKcEVL16dfn4+CgtLU3p6ekObdWqVVNISEipxzApKcnpjTI8PFx+fn7KyMjQ6dOnHdr8/PwUHh5e7DEs/NyUNL6NHMOiYxXnl8I5ztM5wqa08V1Vc4QtpuTkZKWnp1eaHFFYSe+BRo9hae+BJR3D+Ph4hzaz2ayaNWtKKnueLa/zCHLo+S0pKUmnTp2qFDmisp5HFObpHGGL15ZHK0OO4LNG6ecRRY89zi+2PCp5PkeU5TwiPz9fFovF0D66pZg0a9YsZWdn6/7779fgwYMlSR999JHeeustvffee5oyZYo7wnDJz8/PKRFKsp/IF3frWl5eniZPnqybb765wq6uMplMTldN2eaSslgsLq+osgkNDXX5bYF0Zp+KFtBs/bp6TOnMgJPOJPOgoCCXbb6+viXGZHsTLsz2bXpgYKCqVavmst/CbxKuhIeHOy2z7Wu1atXk7+/v0GbbVy8vr1KPYXH9+vv72wuOGRkZio+Pt98qaTabXfZre9yQkBCXFWnpzHNT3HMuyWW/tpiCgoKcbte09evj41PivkZERBTbb2BgoAICAlz2W9oxDAsLK7bfgIAAp9eXbV+LO4Y2pY1vI8fQVWw4f4SEhNj/7+kcUbRfcsS/wsLC5Ovrq/j4ePuHkMqSI1ztT0nvgaUdw9LeA92dZ8/1PIIcen4LCwtTZGRkpcgRxfVLjvj3GIaGhjrk0cI8lSP4rFH6+C66nzi/2PKo5PkcUZY8W7SwWhK3FJN+/vlnXXXVVRo1apR92SOPPKKtW7dq27Zt7gihWJGRkTp58qTTclsV0VYJLOqzzz7T33//rWeffVb//POPQ1t6err++ecfRUREOCWXsrJdflaUyWQqtk36d2C5YrFYiq02nku/ZrPZPmhd8US/57KvRvu1rWf7m2NY8f2e7b4W7rekPvDfV/j5rSrju7SYKmuOsLUX/v+59lseOaI8+5XO/hh66rkp7TyCHHp+8/LychgfnEdUbL/SueWI4vLoufTLZw1j/VbUvuK/r2getS0rTmU8jyhN8b2Wo/j4eDVt2tRpeZMmTZwuuXK3Bg0a6ODBg06XJ+7cuVOS1LBhQ5fbHT9+XLm5ubrtttvUqVMn+z/pTKGpU6dO2rBhQ8UGDwAAAAAA4GZuKYfm5eU5XXYlnbm00tMTj3Xr1k2zZ8/WokWLNGzYMElSTk6Oli1bpqZNm9rvaT127JgyMzN1ySWXSJJ69OjhstD00EMPqX379urfv7/HJxcHAAAAAAAob1X+2rqmTZuqW7dumjp1qhISElSvXj0tX75cR48e1eTJk+3rjRs3Tlu3btXevXslSZdccom9sFTUBRdcoM6dO7slfgAAAAAAAHdyWzFpxYoV9lvHbA4fPixJuueee5zWN5lMmjVrlltimzJliqZNm6YvvvhCKSkpiomJ0TvvvKOWLVu65fEBAAAAAAD+K9xWTDp06JAOHTrksu3HH390Wlb4VxMqmq+vr8aNG6dx48YVu878+fMN9WW7cgkAAAAAAOB85JZi0rp169zxMAAAAAAAAKhgbikm1alTxx0PAwAAAAAAgApm9nQAAAAAAAAA+O+gmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDvDwdQGWQk5OjN954Q59//rlSU1MVExOjUaNG6dprry1xuzVr1mjVqlXavXu34uPjVbNmTXXo0EEPPviggoOD3RQ9AAAAAACA+1BMkjR+/Hh9/fXXGjJkiOrXr6/ly5fr3nvv1bx589SiRYtit3vqqadUo0YN3XTTTapdu7b27t2rBQsWaP369Vq+fLn8/PzcuBcAAAAAAAAVr8oXk3bt2qUvv/xSY8eO1bBhwyRJvXv3Vs+ePfXqq69q4cKFxW47ffp0tW7d2mFZo0aNNG7cOK1YsUL9+vWr0NgBAAAAAADcrcrPmbR69WpZLBYNGDDAvszX11d9+/bVjh07dPz48WK3LVpIkqTOnTtLkvbv31/+wQIAAAAAAHhYlS8mxcbGqn79+goMDHRY3qRJE3t7WcTHx0uSwsLCyidAAAAAAACASqTK3+Z26tQpRUZGOi23LYuLiytTf++9954sFou6du1aLvHl5uY6/G0ymeTl5SWr1aq8vDyn9b29vSVJeXl5slqtDm0Wi0Vms1n5+fkqKCgoU79eXl4ymUwu+zWbzbJYLCooKFB+fn6xMRXdl4rs91z2taz92tazxVjex9AWb3ExeeIY2votr2NYdF/P5hja+i3pGBbu11X/OH8Ufn49nSOM9ltVc4Stb9v/K0uOMNpvebwHlnQMPfUeWNp5BDn0/JaXl6fc3NxKkSPK0m9VzRFF82hp/bojR/BZw9gxxPnLlkclz+eIsvZrVJUvJmVlZcnHx8dpua+vr73dqBUrVmjp0qUaPny46tevf86xWa1WnTp1ymGZv7+/wsLClJ+f79QmSbVr15YkJScnKycnx6EtNDRUAQEBysrKUkpKikObr6+vIiIiXD6mJEVFRclisSg1NdXpmAQHByswMFDZ2dlKSkpyaPP29rYX5uLj451ePJGRkfL29lZaWpoyMjIc2gIDAxUcHKzc3FwlJCQ4tFksFkVFRUmSEhMTnV4gERER8vX1VXp6utLS0hzaAgICFBoaqry8PKd9NZlMqlWrlqQzx7DoiyssLEz+/v7KzMxUamqqpH9fgGlpaQoKClJBQYHLY1izZk2ZTCalpKQoOzvboS0kJETVqlVTVlaWkpOTHdp8fHxUvXp1SXLZb40aNeTl5aXTp08rMzPToS0oKEhBQUHKyclRYmKiQ5uXl5dq1KghSUpISHBKQNWrV5ePj4/S0tKUnp7u0FatWjWFhISUegyTkpKc3ijDw8Pl5+enjIwMnT592qHNz89P4eHhxR7Dws9NSePbyDEsOlZxfimc4zydI2xKG99VNUfYYkpOTlZ6enqlyRGFlfQeaPQYlvYeWNIxtF31bGM2m1WzZk1JZc+z5XUeQQ49vyUlJenUqVOVIkdU1vOIwjydI2zx2vJoZcgRfNYo/Tyi6LHH+cWWRyXP54iynEfk5+fLYrEY2scqX0zy8/NzSoSS7CfyRn+Rbfv27Zo4caLatm2r0aNHl0tsJpPJ6aopk8kk6UyCc3VFlU1oaKjLbwukM/tUtIBm69fVY0pnBpx0JpkHBQW5bPP19S0xJtubcGG2b9MDAwNVrVo1l/0WfpNwJTw83GmZbV+rVasmf39/hzbbvnp5eZV6DIvr19/f315wzMjIUHx8vP1WSbPZ7LJf2+OGhIS4rEhLZ56b4p5zSS77tcUUFBTkdLumrV8fH58S9zUiIqLYfgMDAxUQEOCy39KOoavbPW39BgQEOL2+bPta3DG0KW18GzmG3Ip6fgsJCbH/39M5omi/5Ih/hYWFydfXV/Hx8fYPIZUlR7jan5LeA0s7hqW9B7o7z57reQQ59PwWFhamyMjISpEjiuuXHPHvMQwNDXXIo4V5KkfwWaP08V10P3F+seVRyfM5oix5tmhhtSRVvpgUGRmpkydPOi23VRFtlcCS7NmzRw888IAuu+wyTZ8+3f6klgfb5WdFmUymYtsklRiDxWIpttp4Lv2azWb7oHXFE/2ey74a7de2nu1vjmHF93u2+1q43/J8naLyKfz8VpXxXVpMlTVH2NoL//9c+y2PHFGe/Upnfww99dyUdh5BDj2/eXl5OYwPziMqtl/p3HJEcXn0XPrls4axfitqX/HfVzSP2pYVpzKeR5Smyk/A3aBBAx08eNDp8sSdO3dKkho2bFji9ocPH9bw4cMVHh6u9957z6niDQAAAAAAcD6p8sWkbt26KT8/X4sWLbIvy8nJ0bJly9S0aVP7Pa3Hjh3T/v37HbY9deqU7r77bplMJn3wwQcuL4EEAAAAAAA4n1T5a+uaNm2qbt26aerUqUpISFC9evW0fPlyHT16VJMnT7avN27cOG3dulV79+61Lxs+fLiOHDmi4cOH6+eff9bPP/9sb6tevbquvfZat+4LAAAAAABARavyxSRJmjJliqZNm6YvvvhCKSkpiomJ0TvvvKOWLVuWuN2ePXskSe+//75TW6tWrSgmAQAAAACA8w7FJJ35ZYBx48Zp3Lhxxa4zf/58p2WFr1ICAAAAAACoCqr8nEkAAAAAAAAwjmISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikmScnJy9Morr6ht27Zq0qSJ+vXrpw0bNhja9uTJkxo5cqRatGih5s2b64EHHtCRI0cqOGIAAAAAAADPoJgkafz48Zo7d6569eqliRMnymKx6N5779X27dtL3C49PV1DhgzRtm3bdN999+mRRx5RbGysBg0apKSkJDdFDwAAAAAA4D5eng7A03bt2qUvv/xSY8eO1bBhwyRJvXv3Vs+ePfXqq69q4cKFxW778ccf6+DBg1qyZImaNGkiSWrXrp169eqlOXPmaMyYMW7ZBwAAAAAAAHep8lcmrV69WhaLRQMGDLAv8/X1Vd++fbVjxw4dP3682G2//vprNW7c2F5IkqRLLrlEV199tb766qsKjRsAAAAAAMATqnwxKTY2VvXr11dgYKDDcluBKDY21uV2BQUF2rt3rxo1auTU1rhxYx0+fFhpaWnlHzAAAAAAAIAHVfnb3E6dOqXIyEin5bZlcXFxLrdLTk5WTk5OqdsWLVIZlZubK6vVqt27d5/V9pVBXl6e8vPzZTKZJElWq9VpnZLabO0ltVXEtmXt12q1Ki8vT7///rvMZnO59VtR8Z7rthaLRV5e//3UUVBQoM8++0zZYSb9/N/fHfy/nGjps8+sKigo+E/nT+nfHGrzX8kRZY2pcA61La9s+1re/Z4PeZQcen46n3Ko5DqPSpU/R5S13+LyqCdjqsh+z4ccKpFHz1f/9Tyak5Njfz2WpsoP26ysLPn4+Dgt9/X1tbe7kp2dLUklbmtb52wYfQIrMy8vr/Mi0eP85Ovrq4svvtjTYaCc+UgKDPN0FOWDHIrKjBx6fjqfcqhEHkXlRh49P/3X86jJZKKYZJSfn59ycnKcltsKQX5+fi63sxWMStrWts7ZaNas2VlvCwAAAAAAUFGq/JxJkZGROnXqlNNy27IaNWq43C40NFQ+Pj5ntS0AAAAAAMB/VZUvJjVo0EAHDx50mix7586dkqSGDRu63M5sNis6Olq//fabU9uuXbtUt27ds54vCQAAAAAAoLKq8sWkbt26KT8/X4sWLbIvy8nJ0bJly9S0aVPVqlVLknTs2DHt37/fYduuXbtq9+7dDhNrHThwQJs3b1a3bt3cswMAAAAAAABuZLIWN2V+FTJy5EitXbtWd955p+rVq6fly5dr9+7dmjt3rlq2bClJGjx4sLZu3aq9e/fat0tLS1OfPn2Unp6uu+++W15eXpo7d67y8/P1+eefKzw83FO7BAAAAAAAUCEoJunMhNnTpk3TihUrlJKSopiYGI0cOVLt2rWzr+OqmCRJJ06c0AsvvKANGzaooKBArVu31oQJE1SvXj137wYAAAAAAECFo5gEAAAAAAAAw6r8nEkAAAAAAAAwjmISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJqHKs1qtDn/n5eV5KBLAtcJj1Gq1OozRouMX8LSCggJPhwCUKD8/39MhACVijKIyKygocHivZ7xWXRSTUOWZTCbl5ubq9OnTysvLk5eXlyTpt99+o7CESsFkMiknJ0c5OTkymUz2Mbp3716ZTCYPRwecKcLn5uZKkszmM6cWR44c8WRIgIP8/HxlZmZKkiwWiyRp//79ngwJcJCcnKzMzEwVFBTIYrHo2LFjOnTokKfDAuwSExMlnXmfN5vNOnz4sLKysuw5FVUPxSRUeVarVV999ZUmTZqkkydPSpIGDBigSZMmKTU11cPRAWe+Afrqq6/08MMPKysrS5LUv39/DRs2TMnJyZ4NDlVeXl6eVq5cqZkzZ9q/qRw2bJheeuklpaWleTg64MwYXbZsmT766COlpKRIOjNGP/zwQ97nUSmkpqZq1qxZmjlzpsxms/7880917NhRq1atshfqAU9KTk7WrFmz9L///U+SdPjwYXXp0kWvvPKKhyODJ3l5OgDA06xWq0JDQ7V27VodOXJEBQUFOnr0qP73v/8pMDDQ0+EBMpvN8vb21rZt23TjjTeqdu3aiouL0xNPPKGAgABPh4cqzmKx6K+//tLcuXMVFxenf/75R/v27dPzzz8vPz8/T4cHyMvLSydPntSbb76ppKQk7dq1S3v27NHtt98uf39/T4cHyMvLS9WqVdOMGTMUFxenb7/9Vtdee606deokb29vT4cHyMvLS15eXlq8eLHi4uK0fft2dejQQX369PF0aPAgk5UJNwBJ0tq1azVixAj5+Pjo8ccfV//+/eXj4yOr1cqtRKgUlixZoqefflpms1mTJk1S7969PR0SYDd27FitXr3aPj579uzp6ZAAB88++6yWLFkib29vTZw4UX379pUk3udRKeTl5emZZ57R0qVLdcEFF2jKlClq3ry5JMYoKofs7Gw9+eSTWrFihaKiorRw4ULVqlXL02HBg7jNDfh/R48eVbVq1WSxWLRy5UodP36cN29UCraJDePi4hQeHi5vb29Nnz5dp0+flsSk8fAs2y0YWVlZys/Pl8lk0g8//GC/JZOJOeFptu9NMzIylJeXp8zMTO3du1fx8fGSxPs8KoX8/HydOnVKkZGROnr0qL766iv7+zxjFJ5WUFBgv8qzTp06OnnypKZOnWpv572+auLKJFRZRQtFBw4cUHp6ug4ePKgXX3xRF154oSZNmqRLL73Ug1GiKis6Rvft26fMzEzt2rVLM2bMUGBgoJYsWaLw8HDl5uZyKTw8atu2bUpPT9cXX3yh9evX64YbbtDEiRMVFBSk/Px8JuiE2xXNoXv37lVSUpJWrFihTz/9VHfddZfuvPNOvllHpZCXl6e//vpLeXl5+uabbzRr1izdcccdevjhhxUaGurp8ABJ0i+//GL/4n3+/Pnq2bOnXn31VUlyOhflS/nzH3MmoUoq/KttaWlpCgwM1MUXXyxJio6OlsVi0fPPP68nn3zSoaB0+vRppaamqkaNGnxwR4UqPEZtb86XXXaZJKlJkyYym81644031K9fPy1evFgRERGSzkzimZ6ezocjVKiixSGr1aqWLVtKktq3b6/HHntM33zzjSTpiSeeUHBwsKQzV4ZkZWUpPDzc/UGjSnFVwIyJiZEktWnTRhaLRXPnzpUkDRkyRLVr15Z0ZoympaWpRo0abo0XVY9tjNp+rTUwMFANGjSQJNWsWVOSNGvWLJlMJj344IMKCwuTJPuPxURFRXkmcFQZhcdofn6+/P397bde1qxZU1arVQsWLJAkvfrqq/L29pbVatWxY8cUGRkpHx8fT4YPN6CYhCrHdpmmJL344ovas2ePwsPDdcMNN+j6669XQECA2rdvL5PJpOeee85eUAoKCtLnn3+u5cuXa9asWapbt66H9wTnq8JjdNKkSfafrx42bJiuuOIKhYWFqX///jKZTJo2bZr69++vJUuWyGKxaOHChXrjjTe0du1a1apVi2+EUO4Kf0ifOXOmEhMTFRAQoKFDhyo8PFwmk0kvvviiJkyYoLVr18pkMunZZ5+VJC1evFjr1q3TG2+8obCwMMYnKkThMfruu+/q6NGjqlevnq655ho1bNhQkvTcc8/JZDJp7ty5slqtGjZsmEJCQvTJJ5/ojz/+0NixY/mwjgpTUFAgi8WiAwcOaNq0aTp27Jhatmypa665Ru3atVP16tV1xx13SDpTUDKbzRo6dKjS09M1efJkRUREaPLkyXxYR4UpPEanTJmihIQExcTEaODAgYqOjlZUVJSGDx8uk8mk+fPny2Kx6OWXX9Zff/2l5557Tnl5efr4448lcZvm+Yzb3FBl3X///dq0aZMuu+wynThxQnl5eerZs6dGjRqlwMBApaen68cff9SkSZOUm5urevXq6Y8//tDdd9+tMWPGeDp8VAH333+/tm7dqvr16ys9PV0nTpzQvffeq1tuuUW1atVSXl6eli5dqjfffFPp6elq0KCBdu/erWHDhmn06NGeDh/nuXvvvVebN29WYGCgMjMzFRQUpFdeeUXNmjWTj4+PcnJy9MQTT+i7775TvXr1dMkll2jFihUaNWqU7r//fk+Hjyrg/vvv108//aSgoCBlZWUpKChIzz//vNq3b29f5+mnn9aiRYvUsmVLhYeH6+uvv9bIkSP1wAMPeDByVAWHDh3SwIED5efnp6ioKO3du1e1a9fW7bffbi8kxcXF6eOPP9Z7772nWrVqydvbWydOnND8+fPVqFEjD+8BzndHjhxR3759FRQUpOrVq+vQoUMKCgrSiBEjdMMNN8jPz08nTpzQ7Nmz9eGHH+qCCy6Qj4+P4uPj9f7776tJkyae3gVUMIpJqDIKf1N59OhRjRgxQvfcc486duwob29vTZgwQZs3b9bVV1+tJ5980v4Bad++fXrjjTdkNpvVuXNnDRgwQNKZir3ZzBz2KD+Fx+jvv/+up556Svfdd5/atGkjf39/TZo0SYsXL9bQoUM1ePBg1a5dW3l5efr+++/11VdfKS4uTr169VL//v0lMUZRvgrfevn1119r6tSpGjlypJo3b66///5bM2fO1L59+/Tiiy+qbdu29oLS1KlTtWHDBmVlZWnw4MEaMmSIJOZSQPkrPEZ/+OEHPfPMMxo5cqRuuOEGbdy4UQsWLNDmzZv15ptvqnPnzvbtpk6dqpUrV8rHx0e33Xab7rzzTkmMUZQ/2/t8QUGBVq5cqeXLl+vRRx9Vo0aN9Mcff2jSpEk6efKkBg0apKFDh0qSkpKS9OOPP2rx4sWKjIzUww8/rEsuucTDe4LzlW2M5ubmasmSJVqzZo0mTJigiy66SPHx8br//vsVFxenxx57TD179pSfn5/i4uK0bt06ff/997JYLHr00UcZo1UExSRUOVOmTFFaWpp27NihefPm2efuyMnJ0Ysvvqh169bp2muv1cSJExUYGCjpzAllWlqagoKCJPEhHRXrzTffVFZWlr7//nstWLDAYeLNyZMna/78+Q4FJZvU1FT73DSMUVSUFStWKCUlRT/88IPeeOMN+fv7q6CgQEePHtUzzzyj3377TS+88ILatWsnHx8fFRQUKD09XRkZGfbbhhifqEjz5s1TSEiIfvzxR02ePFl+fn6SpF27dumNN97Qhg0bnApKcXFxMpvNql69uiTGKCrOwYMHNWvWLB07dkz16tWz3wYsSX/++adeeOEFHT58WIMHD7YXlKQzv5hpMpnk6+vribBRhRw4cEDLli3TgQMHFBkZ6TBGc3Nz1b9/fx07dkyPPfaYevXqJT8/P3sRKjMzU/7+/h6MHu7EuySqlJ9//lmzZ8/WTz/9pNq1azsUknx8fDRhwgR16tRJGzZs0Isvvqi0tDRJZ+71tRWSrFYrJ5ioMHv37tWbb76pjz76SGFhYfZCUk5OjiRp4sSJGjRokObMmaOPP/5Yx48ft29rKyQxRlFRvvrqKz3++OOaOnWqIiIi7CeMZrNZdevW1TPPPKNGjRrpiSee0IYNG5STkyOz2aygoCB7IYnxiYq0fPlyvfjii3rmmWcUEBAgPz8/e/5s0qSJRo4cqWuvvVYPP/ywvv32W/t2NWrUsBeSGKOoSMuWLdOyZcv0999/2yeFz8nJUUFBgaKjo/XEE0+obt26mj9/vubNm2ffzs/Pj0IS3OL777/X+++/ry1btuiCCy6wL8/JyZG3t7cWL16s2rVr69VXX9WqVauUlZVlv7KeQlLVwjslqpSrrrpKU6dOVVpamtavX69Vq1ZJknx8fJSbm2svKN1www1at26dJk6cqNzcXIc+uOQdFcVqtSomJkYffvihAgMDtW3bNn311VeS/h2jkvTkk0/qzjvv1Pvvv69Zs2YpIyPDoR/GKCpK8+bNNWbMGHl7e2vnzp06cuSIQ7utoNS0aVONGTNG3333nVMfjE9UpOuuu0533nmn/Pz89Ouvv9rf24sWlNq3b68HH3xQq1evduqDMYqKNGbMGA0dOlQnT57UnDlzdPjwYftE2raC0sSJE3XRRRdp+vTp9kmMAXe5++67NX78eKWnp+uLL77Qnj17JMmeS20Fpbp16+qJJ57QmjVrPBwxPIViEs5b+fn5Lpf36NFDzz//vIKDg/XWW29p/fr1kiRvb2/7See4ceN0/fXXq23btvL29nZn2KhCio5R2weYVq1aaerUqQoODtasWbO0adMmSf+OUUmaMGGC+vXrp3r16ikgIMC9gaNKKCgocFoWFRWlXr16aejQoTp8+LDefvttnT592mGdunXr6qmnnlJMTIwSExPdFS6qIFdjNCIiQvfee69uvvlm7du3Tw8//LAkORWUHnzwQV155ZU6ceKEW2NG1eJqjErSuHHjNHToUB07dkxTpkzRkSNH7FfD2QpKjz/+uFq3bq1rr73WnSGjiilujN51110aM2aM9u3bp3nz5unvv/+W5FhQ+vjjj9WiRQs1btzYnSGjEmHOJJyXCk/C+eOPPyohIUE+Pj5q2rSp6tSpI+nMvB+TJ09WVFSUxowZY/91l9zcXHl7ezvMl8AknChvRcdoUlKSCgoK1KVLF3txaNOmTXrkkUd04YUX6rHHHtPVV18t6d8xClSUwuNz//79Sk5OVlBQkKKjoyVJ8fHxWrhwod566y3dcsstGjdunP1WYJu0tDT7vHNAeSs8Rg8dOqRTp06pbt268vPzU0hIiOLj4/Xee+9pwYIFuu666/T2229L+ve2dunMOLbd2gaUN9scMidPntTu3bv1zz//6PLLL1fdunVVq1YtSdKkSZO0dOlStWvXTmPHjlXdunXtH+7NZrPDeAXKm22MxsXF6ddff1VSUpKqV6+uTp062deZOXOmZsyYoT59+ujee+/VRRddJEmMTUiimITzUOEi0IgRI7Rt2zalpaUpPz9fMTExuvnmm+0TGq5atUrPPvusatWqpdGjR9sLSoWLRxSSUN6KjtEdO3YoOTlZZrNZtWrV0gMPPKAOHTooJCREmzdv1ogRI5wKSoxRVJTCvyr46KOP6ueff9aJEycUHBysxo0b64UXXlBUVJQSExP1ySefaObMmcUWlCTGJ8pf0TG6ZcsWxcfHKyQkxH4r5mWXXaaEhAS99957mj9/frEFJYkxivJne5/ft2+fHnroISUlJSknJ0c5OTlq3769brnlFnXp0kWS9MILL2jx4sW67rrr9Pjjj9sLSszbhYpkG2N//fWXHnjgAaWlpSkzM1NZWVm6/vrrNWjQILVt21aS9Pbbb+uNN95wKigBFJNw3nrssce0adMmjRgxQldeeaX8/f11++23Kz8/Xy+//LK9cLRq1Sq98MILCg4O1ujRo3XDDTd4OHJUFY899pg2b96sBx54QM2aNZMkjRo1SllZWZo6daquuuoqmUwmbd68WaNGjVKNGjX02GOP6brrrvNw5KgKbIXOgQMHqlmzZoqNjdW0adN02WWX6d1331WNGjWUkJCghQsX6t1339WNN96oCRMm2CeCBypa4TF6zTXXaNOmTZozZ468vb312WefKSoqSklJSXr33Xf1ySefqFWrVnrvvfc8HTaqiGPHjun222/XRRddpDvuuEPNmjXTpk2b9Nhjj6l169aaNGmS6tatK+lMQWnZsmVq0qSJnnvuOYdJj4GKYhuj9erV05AhQ3TJJZfozz//1COPPKIuXbpo4sSJ9h/PePvtt/Xmm2+qU6dOevTRR1WvXj0PR4/KwMvTAQAVITY2Vrt27dI999yjm266SQEBAfrzzz+VmpqqW2+9VQ0aNLB/E9mjRw/l5+dr3LhxyszM9HToqCL27NmjX375RcOHD9fNN9+swMBAbd26VXFxcerevbvq1q0rk8kkq9WqNm3a6PXXX9fQoUOVmprq6dBRBWzYsEE7duzQyJEj1b17dwUGBtrn+IqJibFfxREREaH+/fsrPz9fb731lm666Sb71XNARdq4caN27typESNG6MYbb1RgYKAKCgr09ttvq2vXrvb8GRYWpnvvvVd5eXlasGCBvv32W3Xs2NHT4eM8Zju/XLt2rfz8/PTggw+qZcuWkqTjx4/Ly8tLffr0UWRkpP0quyeeeELp6en64Ycf7LdvAhXtm2++kZeXlx5++GH7GF2+fLm8vLx03XXXOXw59MADDygrK0sfffSRnnzySU+FjEqGbIXzQtHLgePj43Xs2DE1b95cAQEB2rx5s+677z516dJFDzzwgL3KfuTIEdWtW1e9evVS48aNVb9+fQ/tAc53RcfoyZMnFRcXp+uuu06BgYHatGmT7r//ft1www0aNWqUfYzm5OTI19dXV199tb7//nvVrFnTU7uA81jR23wOHTqk7Oxsde3a1T4+H3nkEXXv3l2jRo1SZGSkfd3IyEgNGDBA119/vZo0aeKJ8FEFHThwQGlpaercubMCAwO1ceNGPfjgg+ratatGjBihGjVqSJJSU1MVHh6uBx54QN26dVOLFi08HDnOZ4Vz6V9//SVvb2/7h/SXX35ZH374oZ5++mndcMMN8vPzU0ZGhk6fPq2oqChNnjyZebxQYWw3IxV+r9+zZ49CQkLsY/SVV17R3Llz9cwzz6h79+7y9/dXdna2fH19JUmjR4/WXXfdpbCwMPfvAColbsbFf5ZtgkJX95UXFBTIYrEoMjJSsbGxuu+++3TDDTdo3Lhx9g/pixYt0syZM5WSkiJJ9ss1i/tVA6CsCv9am22MpqWlSZKqVaumgoIC5eTk6LfffrMXksaOHWsfo3PmzNGDDz5o78dWSGKM4lzYTigL3+VuO7nMzs6WdObXWsxms7y9vbV9+3Y98MAD6ty5sx5//HH7OJw3b56effZZSWd+5c1WSGJ84lwVnYGh8Jiy/SKbl5eXQkJCFBwcrE2bNunBBx9U586dNW7cOPsY/fTTT/X+++8rMzNTERER9kISYxTlxfYLq7ZxWfjXLW3zeknS66+/rvnz5+vpp5/WTTfdpGrVqkmSnnzySa1bt055eXmSRCEJ5S4rK8v+f5PJ5PArq8HBwfbz0mnTpmnevHl6+umn1atXL/sYHT58uObOnWvfhkISCqOYhP+kvLw8LVmyREuXLrV/SO/du7f9g81VV12lCy+8UPfcc49uu+029ejRQ6NHj7Z/U3nkyBGtW7fOXkiS/v0wxYSHKA+5ubn68ssvtWDBAvuye++9V1OmTFFOTo5q1qypyy67TM8//7wGDx6sbt266fHHH7eP0cOHD2vHjh3y8vJy+ul1xijOhclkUk5OjtauXastW7bYlz/xxBNauXKlrFaratSooZycHL366qu655571KVLF4fxuW/fPq1du1ZWq9XhRFVifOLc2cbomjVrtGfPHvuYGj16tDZs2CBJuuyyy3T8+HG9/PLLeuihh9SpUyeHMfrXX3/po48+UlZWlsOHeokxivJx8uRJvfnmm/rtt9/k4+OjP/74Q61atdKPP/4oSerevbsOHz6s/v376/3339ezzz6r7t27y8/PT5L0008/6ddff1Vubi5jEhXixIkTWrBggdauXSuTyaR9+/apf//++vLLLyVJTZs2VWZmpu644w699957mjRpknr06GEfoz/88IMSEhJktVopwsMlMhf+k9LT0/XXX3/pySef1Ny5c3X//ffr1KlTuuqqq5Sfn6+AgADddNNNio+PV3BwsB566CHVqVNH0pnJ5pYtW6adO3eqZ8+eCgkJ8fDe4HyUm5urTZs26bXXXtObb76pu+++W7t371b79u3l5eWlCy64QN26ddPPP/+siIgIDRgwwH5F0smTJ7V8+XJt3bpVvXr1UmhoqGd3Bued06dPa/bs2XrmmWe0ceNG3X333Vq9erVq1aolk8mk6667Tp06ddJHH32kSy+9VPfff799fMbFxWnlypU6ePCg2rVrZz/pBMpTUlKSlixZopEjR2rPnj0aNmyY1q5dK4vFovz8fF111VXq37+/FixYoIsvvthhotiTJ0/qyy+/1KlTp9SmTRt+vhoVIiUlRT/99JP69eunVatWaejQoWrZsqX9NuBLLrlEHTp00N69e9W2bVvdeuut9l+83LVrl+bMmaOAgAB16dKFYhIqRGpqqj7//HO99NJLmjdvngYMGKD69esrJiZGktS5c2dddtll+vnnn9WxY0f7bcOStHv3bs2bN08Wi0XdunVjjMIlfs0N/1kHDhzQ66+/rm+++UbVqlXTrFmz1LRpU/vEhVlZWZoyZYqWL1+umjVr6s4771Rqaqp27typ9evXa+TIkbrnnnsk8bPAqBiJiYkaOXKkdu3aJYvFoldffdVp4tcXX3xR8+bNU6NGjdSvXz9lZWVpx44dWrt2LWMUFSo2NlaDBw+2X7XxwgsvqFOnTvb2kydP6tlnn9UPP/ygO+64Q927d1dSUpK+++47ffrppxozZoyGDRvmqfBxnsvJydGOHTs0ceJEpaSkyGw264UXXrAX5CVp586dmjVrlr777jvdc889uvrqq5WVlaWvv/5aK1as0OjRoxmjqFAbNmzQU089pRMnTqhJkyZ65513FBwcbP/gvXfvXr300kvatGmTOnXqpOuuu04HDx7Uli1bdPToUc2fP1/R0dEe3gucz7Zs2aLHHntMiYmJiomJ0VtvvaWaNWvapwnJzMzUoEGDtG/fPl1zzTW6+eabtWvXLv3yyy86ePAgYxQlopiE/7RHHnlE69atU35+vkaPHq377rtP0pmTUB8fH2VnZ2vJkiVasWKF/vzzT0nS5Zdfrptvvln9+/eX5HrOJeBc5eXlycvLS3feead+/vln+fr6atCgQRo9erSkf8eoJM2ePVurVq3S77//LovFokaNGumWW25hjKLCFP41ywMHDqhOnTqaMGGCOnfu7NCekJCgV155RV9++aV9bpD69evrjjvu0ODBgyUxPlGx+vXrp927d6t27dp69dVX1bx5c4f2P/74Q0uXLtXHH39sX3bRRRfp9ttvZ4yiwhTOkX369FFSUpLMZrM++ugjNWrUSDk5OfLy8pLZbNaBAwf0xRdfaMWKFUpMTFRoaKguv/xyjRkzRpdccomndwXnKdsYzczMVMuWLeXl5aXw8HBNmDBBN9xwg6R/z0UzMzP14osvasuWLTp06JCqV6+uxo0b67HHHmOMokQUk/CfZEuQixYtktls1rp16/T999/rscce0/DhwyX9myCtVqvy8/MVGxursLAw+fv7KyIiQhInmKh4n332mfLz8/Xpp59q//79uv322zVy5EhJcviFjNTUVMXHx8vX11f+/v4KDw+XxBhFxcnLy9M777wjs9ms2bNnq06dOho9erSuv/56SY5j748//lBSUpICAwMVHh6uunXrOq0DlLdTp05pyZIlKigo0LJly1StWjVNnjxZjRs3drpS888//1RcXJz8/PwUFRXFGIVbnDx50j5/3Pz58xUXF6d58+apSZMmysvLk8lkst+amZmZqYMHD6pWrVry9/dXQECAp8NHFfHhhx9KOvPlpZ+fn0aPHq2uXbtK+vdcND8/X9nZ2fr7779Vt25dWSwW+yTcQHEoJuE/Iz8/32kSTZu9e/fqjTfe0LfffutQUJKkjIwMhzdsWyGK24ZQ3koaoydPntSYMWP0119/ORSUrFarsrOzVVBQYB+njFFUhJLG565du3T33Xerdu3aevTRR9W+fXtJsk+6WVBQIG9vb4dtGJ8ob67GaG5urnJzc/Xrr7/qqaeekr+/v1544QWHglLhKz0LY4yivBUeo0ULlWvWrNFrr72muLg4zZ8/X40aNbK3paSkMEcn3KKk9/q1a9dq0qRJ8vPz05gxY9SlSxf7NqdPn2aOTpQZxST8JxROjAsWLFBCQoLq16+vdu3a2a/g+P333/XWW29p3bp19oJSSkqK5s+fr8OHD2vKlCme3AWc5wqP0blz5yo7O1uBgYG644477Ov8888/GjdunPbv36/bbrtNI0eOVFZWlhYtWqRdu3Zp8uTJTGaMClF4fK5atUoWi0WRkZEOtwz98ssvuvfeex0KSpmZmVq5cqVycnLUv39/p4ISUF4Kj9HvvvtOaWlpat68ucLCwhQQEKCsrCxt3bpVzz77rPz9/fXiiy+qcePGysjI0PLly1W9enV16tTJPp8SUN5sY/TIkSNauXKlUlJS1KVLF11yySX2QtHq1av1+uuvKy4uTh9//LEaNmyoAwcO/B979xlWxbW/ffxLr4oUAQERRQRrFEvsPXZjiRo7drGC2HuiYu8Vu7Fh711jV6zYu4gCKiIivezN3vO84NmTjZqc8z+hJLA+byK7XWuuc5+ZWb9ZhRkzZtC2bVt+/PHHXD4KIS/Tzui+ffvQ09PDw8NDnsIOGUXPmTNnYmJiwsiRI2ncuDGvX78mICAAd3d3evfunYtHIPzbiGKS8K/Sv39/Ll++jIGBAQqFgtq1azNgwACqVasGZEzFWLlyJWfOnKFFixYYGRlx4MABevfuzZgxY3K59UJ+0L9/f4KCgtDX1yctLY2KFSsyc+ZMnJ2d0dPTIyIignHjxvH8+XMqV65MkSJF2L59O35+fgwYMCC3my/kcd7e3ly5cgWlUom1tTWNGjVi2rRp8vuagpKdnR3NmzdHqVSyevVqpk6dSpcuXXKx5UJ+4e3tzcWLF1Gr1RQqVIgff/yR/v37U7hwYdLS0rh+/Tq//vorpqamtG/fnujoaNavX8+4cePo1atXbjdfyONCQkLo1q0bKSkpqNVqJEmiR48edOzYkRIlSgAZBaXFixcTGRlJ+/btef78Obdv32bPnj2ULVs2l49AyOs0SyooFAp0dHRITk7Gy8sLb29vLC0tgYyC0uzZs0lPT6dOnTq8e/eOu3fvsmvXLtzc3HL5CIR/E1FMEv7RNIsYAxw/fpyFCxfi6+tLqVKliIiIYNSoURQtWpQRI0bI0zKePn3Krl27OHXqFAYGBnh5eck3mGLIu5DVtDO6e/du1qxZw7Bhw/Dw8ODp06csXbpUnpZRunRp9PX1effuHXPnziU4OBi1Wk3fvn3lJ0Eio0JW0h7tsWTJEvbt20ffvn1xc3Pj0KFDnDx5kqpVq7J69Wr5Ow8fPsTb25u4uDgMDAzw9vYWhU4h22hnNCAggMDAQPr06YOnpye//fYbN27coGLFikycOBE7OzvS0tIIDg5m5syZvHjxAnNzcwYOHCjvfCkIWU0znU2hUDBt2jQ+fPhA//79cXBwYP/+/axYsYLWrVvTv39/ederc+fOERgYyKNHj7C1tWXOnDliRywh22jOowqFgvHjxxMbG8ugQYMwNzfnzJkzrF69mubNmzNy5Ejs7OwAOH/+PGvWrCEsLAwrKyvmzZuHu7t7Lh+J8G8jiknCv8KFCxe4fPky4eHhzJ8/H3NzcwBevHhBly5dvlrnIyEhgeTkZBISEihZsiQgFuEUsteNGze4d+8eDx8+ZNasWZiamqJUKnny5AljxoxBX1+f2bNn4+Hhgb6+vpzRpKQk+WmmyKiQXcLDw/n999/5+PEjQ4cOxcTEhJiYGA4cOMCiRYuoUaMGa9askT//8eNHQkNDMTY2pkKFCoDIp5C97t69y8mTJ9HT02PYsGHy5gQLFizg0KFDVKhQgUmTJmFnZyevNXfjxg0sLS0pX748IDIqZJ+IiAgeP37Mhg0baNmypbxTIGQsvzBjxoyvCkrx8fF8/vyZAgUKyEsyCEJ2CQ8P5/Pnz6xevZratWvLo4mTk5M5evQo06ZNo3nz5owaNQpbW1sgYz1PAAMDA5FR4X8iiknCP97GjRuZM2cOJUuWpE2bNvTv3x+1Wo1KpcLAwCBTQWnUqFHUrVv3q98Qoz2E7KS5kbSxsaFDhw74+vpmev/+/ftyQWnOnDmULl36qw6PyKiQXWbOnMnmzZuxtrbGz8+Pn376SR5Rl5CQwO7du79ZUNImOulCdpo8eTKnTp3C2NiY8ePH06xZM1JTU+U15BYuXMjBgwczFZS+JDIqZBelUsnPP//Ms2fPKFq0KGvXrqVo0aKZFn7X3Ae0atUKb29v+UGmIOSEtLQ0+vXrx82bN7G3t2fp0qVUqFBBvrdUKBQcPHjwmwUlQfg7xFVX+Mfr2rUr7du35+XLlxw9epS3b9+iq6uLgYEB6enpuLm5sWPHDqKiopg1axZnz5796jdEJ13ITjVq1KBbt258/vyZ27dvExMTk+n9ChUqyAvA+/n58fDhw69+Q2RUyC4VKlSgUqVKxMXF8fbtWwB0dXVRq9UUKFCAjh07MmLECG7evEmfPn2++Ruiky5kp4YNG2JiYsKHDx948OABAMbGxigUCiDjvNmmTRsePXrEL7/8QmRk5Fe/ITIqZBcDAwPmzJmDu7s7r1+/JjAwkNTUVAwNDUlPTwege/fuTJo0iSNHjrBgwQJCQ0NzudVCfmJoaIi3tze1a9cmMjJSXhtRc29paGhImzZtmDJlCqdPn+bXX3/l06dPudxqIS8QV17hH+VbA+WMjIyYPHkyP/30E0+fPmXfvn3yCVBfX5/09HRKlizJ5s2bCQ0NJTExMaebLeQj38qoq6srXbt2pUOHDty6dYs9e/agVCozfaZChQr4+/uTmJjIq1evcqq5Qj6jnU+VSgVAq1at6N27NyVKlGDlypVcvnxZ7nhrF5QGDx7M1atXOXPmTK60XcgftDOq6Yg3aNCAuXPnYmNjw65duzh48CCQ0QHSLig1a9aMa9eu8fTp05xvuJBvfOs67+bmxoIFC3B1deXw4cOcPXsWpVIp34dCRkFp1KhRXLt2DVNT05xutpCPfJlRHR0dqlevTt++falYsSJbtmzh1q1bmT6jKSiNGjWKu3fvyrkVhL9DTHMT/jG0FzKOiYlBqVRmmsOrVCoZM2YMp06dYvDgwXTu3Blra+tM342NjaVQoUK5dQhCHqed0cTERJKSkjAzM5PX8AoNDWXNmjUcOHAAPz8/evXq9dVW6tHR0djY2OR424W8T3shY4CUlBRMTEzkv0+fPs3SpUuJiIhg+fLl1KpVC7VaDWSM6oiPjyc8PFzsNiRkmy8zmpiYKJ8/AYKCghg3bhzGxsYMHTqU1q1bA2SaThQcHIynp2fONlzINzQZ1axpqFAosLW1la/lISEheHt7o1KpGD16NI0bN5ZHymvuD+Li4rCwsMjNwxDyME1GU1NTSU1NRaVSYWRkhLm5Oenp6QQHBzN79myioqKYN28eNWrUyPR9hUJBWloaBQoUyKUjEPISUUwS/hG0bzBnzJhBcHAw7969o0CBAvTq1YuGDRtSpEgR0tPTGT169DcLSpoo6+joiLUThCynndHp06dz+/ZtQkJCcHV1pWHDhgwfPhyAsLAwVq1a9ZcFJRDrewhZSzufixcv5sGDB4SGhlK7dm2qV69OixYtADh58iTLly//qqAkSVKmTr7Ip5DVtDO6dOlS7t27x7t376hSpQpNmzalWrVqGBoacvnyZSZOnPiXBSUQGRWyniajr169YtasWYSEhJCamoqDgwPDhw/nu+++w8LC4j8WlMQaiEJ20c6ov78/ISEhJCQk4ObmRr9+/WjcuDGSJHHr1i1mzZpFVFQU8+fPp3r16rnddCGPEsUk4R/F29ubO3fuUKtWLSwtLXn48CEPHjygWbNmDBgwAA8PD5RKJWPHjuX333+nX79+dO7cmcKFC+d204V8wtvbm3v37lG9enWcnJy4fPkyT5484YcffmDatGlYWlrKI5QOHz7MsGHD6N27d6ZOkCBkl4EDB3Lv3j1cXFwoVKgQN27cQEdHh+7duzNixAgATp06xbJly3j//j2LFi2iTp06udxqIa/T7lwPHDiQu3fv4urqioGBAffv38fQ0JAuXbowcOBATExMuHLlChMmTMDMzIwBAwbQtm3b3D0AId94/fo1nTt3xt7eHk9PTxQKBTdv3iQqKoqBAwfSoUMHbGxsCAkJYdCgQQAMGTKEFi1afPPBkSBkNU1GHRwc8PT0RKVScfHiRd6+fYufnx8DBgxApVJx69Yt5syZQ0xMDNOnTxfXeiF7SILwD7Fnzx6patWq0r59+6SUlBRJkiQpOjpa2rBhg+Th4SGNGjVKio6OliRJklJTU6Vhw4ZJ7u7u0r1793Kz2UI+sn//fqlSpUrS3r17pcTEREmSJCkiIkIKCAiQvvvuO2nYsGHyZ0NDQ6XRo0dL7u7u0oMHD3KryUI+sn79eqlSpUrSwYMHpYSEBEmSJOnevXtS3759JQ8PD2nRokXyZ8+cOSM1a9ZMcnd3l96+fSup1epcarWQn6xZs0aqXLmytH//fiktLU2SJEl6//691KFDB6lixYrSsmXL5NevXr0q1ahRQ6pevboUEhKSm80W8gG1Wi2lpaVJI0aMkFq1aiXdv39ffi88PFzy9fWVypYtK23evFlKT0+XJEmSQkJCpGrVqkmtW7eWz7mCkJ0UCoXk5+cnNWvWLFNG79+/L40aNUpyd3eXtm3bJkmSJKWnp0s3b96UGjVqJDVt2lRKTk7OrWYLeZh+bhezBEEjLCwMtVqNp6envB2wtbU1vXv3RqVSMX/+fGrVqkXbtm0xMjJi/vz5XLt2jQoVKuRyy4X84vXr1+jo6FCnTh3MzMxQq9U4OjrSqVMnlEoly5cvZ/369fTt2xcXFxcGDRpEmzZtKFeuXG43XcgHnjx5gq2tLU2aNMHY2BiVSkWFChUYO3Ys/v7+BAYGUrFiRerXr0+jRo1QKpUoFAocHBxyu+lCPvHkyRPs7Oxo1qwZhoaGKJVK7O3t2bhxI15eXgQGBlKnTh2+++47atSowZw5c4iMjKREiRK53XQhj9PR0cHQ0JBnz57h6OhI+fLl5fecnJz49ddfSU1NZeXKlTRp0gQ7OztKlCjBzp070dHRybT2lyBkF7VazbNnzyhZsmSmjJYvXx5vb28SEhKYNWsW5cuXp3z58nh6ejJ37lwKFy6caQ1FQcgqYrK5kCs0i77CH2sdJSYmIkmSvCCc9i4DLVq0oFixYuzatUv+nKGhIXXr1v3q9wQhK3wrUzo6OiQlJcm7ZGlYWlrSunVrHBwcuH79upzd4sWLU6tWrT/9PUH4X0lfzFBPT08nOTkZpVIpryOjmVbk5ubG0KFDSU5OlrddB2jWrBk//vgjIPIpZD3tjKrVatLS0vj48SM6OjpIkoRKpcLAwACVSoW5uTnz5s0jLi5O3k1QkiTq1KlDx44d5d8QhKyknVFJkuQFjbXX4tLkztzcnM6dO/P582d5t0FJknBxcaFYsWI523Ah3/jyWq/JZlxcnPya5p7U1dWV9u3bo1QqefLkifx5T09PihYtmkMtFvIbUUwScpxKpZJPhjExMfLr9erVQ6FQsHz5cgD09fXlLYEdHBwoVqwYiYmJGBgYfLWwoViEU8hK2hmNioqSX3dzcwNgy5YtJCYmoqurKxeOihUrRrly5Xj16hWpqalf/abIqJBVVCqVfA5MTEwEMs6Xzs7OvH37lqtXryJJErq6uqhUKiRJokqVKri4uHD9+nXUavVXHXORTyEraWdU0zk3MjKievXqvHz5ksePH6OnpycvJitJEk5OTjg5OfH48WPgzztRgpAVNBlNTEyUH1IaGxvTpEkTLl68yIkTJ4CM3GmK9FWrVsXY2JikpCQAsci2kK20MxofHw9knBcrVKjA/fv3OX78OAB6enpyf6lJkyYYGBjw5s2bXGu3kL+IK7OQo7R3c5k5cybDhw/nwoULAJQrV46aNWty+PBh1qxZAyAvWhwZGUlsbCzOzs7yzkOCkB2+zKi3t7f8FLJFixbUqlWL7du3c/DgQRITE+WtgN+9e8f79+/x8PCQp2kKQlbTzufy5cuZM2cOly9fBqB///64uLiwaNEinj17Jn9WR0eHN2/ekJKSgoeHB7q6uqJjLmQb7YwuW7aMJUuWcOXKFQCaNm1KiRIl8PHxITw8XP6cjo4OHz9+RK1W4+zsLL8mCNlBk9HQ0FD8/PwYO3Ysb9++BaBRo0bY29uzfPlyzp8/DyAvrB0cHIyRkRH29vbA1wVPQcgq2ru2jRo1ij59+hAREYGhoSEDBw7EwMCAtWvXcvHiReCP/tKlS5cwNDSkePHiudl8IR8Rd5NCjpG0tp4eOHAgp0+fplixYri4uABgZWXFuHHjcHJyIiAggPHjxxMSEkJQUBDbt2/n0aNHNGrUCBMTE3GTKWSLLzN66tQpqlatSpkyZeTPLFy4EDc3N+bNm8f8+fN59eoVwcHBBAYG8uTJExo2bCgXmAQhK6nVajmf3t7e8lodms63paUlo0ePJiYmhtGjR3P8+HGSkpIIDQ1l//79fPz4kSpVquTmIQh53JcZ3b17N58+fZI7NiVLlqRv376o1Wq6dOnChQsX+PTpE6GhoezcuZPIyEh5C2txnReyg+Y6HxISQteuXUlNTaVUqVLyNKAqVaowYsQIPn36xKRJk9i4cSMvXrzg+PHjbNy4MdMSCyKjQnbQzmi3bt1ITU2lYcOGODk5ARkj4ZcuXcrr16/x9/cnICCAT58+cezYMTZt2oSZmRk1atTI5aMQ8gsdSZTVhRy2bNkytm3bxoQJE2jcuDGmpqbylAtdXV3evHnDokWLuHTpEklJSejr62NmZkbfvn0ZMGAAkHmbYUHIakuXLiUwMJBJkybRoEEDOaM6OjryukkjR47k0qVL8pQ4zRbW/fv3B0RGhewzY8YMDh8+zNSpU6lTpw4FChRArVajq6tLWloa165dY/78+bx48QJTU1MMDQ1JTk5m6NCh8jlUELKTdkZr165NwYIFSU9PlwvtBw4c4LfffuPJkydYWVmhq6tLYmIigwcPFhkVsl1cXByDBg1CrVYzadIkeZMMpVIpj0I6ffo0Gzdu5N69e6hUKkxMTLCxsWHZsmV4eHjkZvOFfCA+Pp4BAwagq6vLhAkT5Ixqj/y8f/8+o0ePlqe0GRsbY2Njw/Lly0VGhRwjiklCjuvRowc6OjqsWrUKMzOzTO9pTpJxcXHy2h/29vbY29vLT9Q1nSZByC5eXl6o1WqWL1+OhYVFpve0L+TXr1/nzZs3mJubU6RIESpVqgSIjArZJyYmht69e+Pq6sq0adMwNzf/ZuEyJSWFwMBAIiMjKVSoEGXLlqVevXqAyKeQvT5+/Ejfvn3x8PBg+vTpGBkZyRnVzl5kZCRnzpzh0aNH2NnZyTsNgsiokL1evXpFp06dGDBgwFcPKbXPp2/fvuX9+/fcv38fFxcXypYti52dXW42XcgnXr9+Tfv27Rk0aNA3H1Jq7kWjo6N5+fIlISEhFC1aFHd3d5FRIUeJuRhCjlGr1cTFxfH06VNatWqFmZlZpqdA2lOMLCwssLCwyDS9SPMb4gZTyE5xcXE8e/aMpk2bYmFhkenirZ1RgO+//57vv/8+0/dFRoXsFB8fT0hICG3atPmqkKT9bxMTE/r06fPV90U+hewWHx/PmzdvaNGiBUZGRpkK8NqddXt7e7p37/7V90VGhez2+vVrEhMT+e677wBQKBTymjPa51EHBwccHR3F9GAhx717947k5GQ5e9rnUc10YkmSsLGxwcbGRp4eLAg5TVythRyjq6uLpaUlZcuW5fr16yQkJGBgYCAvYKi5eJ8+fVreGvhbvyEI2cnU1BQXFxeCg4OJiIj4Zkf94MGD7N2795vfFxkVspOenh5GRka8ePEChUKRaUSS5t/nz5+XF+X8ksinkN1MTEwwNjbm3bt3QEbmtK/zOjo6XL9+nUuXLgFi1zYh57m5uWFmZsbJkyeBjMWLtZdbAFizZg2hoaG51kYhf7OxsUFPT49jx46RmpoqF5I0O7UC+Pv7i4wKuU5csYUcV61aNd68eUNAQAAJCQny0HeADx8+sGPHDo4ePSpvvSoIOcnAwICGDRvy4sULjh07RmxsLPBHRz0qKorff/+dCxcuyNuyC0JOKVq0KI0bN+bs2bM8fPgQyNwZDwsLY+fOndy/f1/eKlgQcookSdjb29OoUSN2797NhQsXMl3jIWNUyKpVq3j69Km89bUg5KQCBQpQsWJFjh07xuHDh4HMRcybN28SGBjIrVu3cquJQj5XqlQpPD09OXbsGNeuXUOpVAJ/3IsGBwdz6dIlgoKCxK6CQq4SxSQhx2hOdt7e3nh6evLbb7+xbNkyYmJi5IW3AwMDuXfvHvXr1/9qPSVByG6ajA4YMIBmzZqxatUqtm/fzqtXrwAICQlhx44dXLlyhUaNGmFubp6bzRXyGU0+O3fujI2NDT4+Pty8eZPk5GQAwsPDOXToEMHBwbi7u8vTNgQhp+jo6KCrq0uLFi1wdnZm0qRJXLhwQX6q/v79e44ePcrTp08pVqxYpmnDgpATJEmiUKFCjBo1CqVSyZIlS9i2bZv83s2bN1mzZg0GBgbUqlUrl1sr5EcqlQrI2MjAzMyMWbNmcezYMfkh+82bN1m5ciVqtZr69euLgryQq8QC3MLf8uXCr9pzer9F875KpaJ///7cuHEDa2trXFxciIyMJDIykiFDhohd24Qs83/NqEZkZCTz5s3j6NGj2NjYULx4cd69e8fHjx8z7YolMirkNLVazZkzZ1i2bBkRERF4enpia2vLixcvePLkCb6+vvKCnYKQWw4fPsyKFSt4/fo1DRs2pECBAoSFhXH//n2RUSFbaK7HmvU4tddC0qZZl0uTxaioKEqWLImuri6fP39GoVCwfv16sSOWkG20+0N/dU96584dJk6cyKtXryhWrBjm5uZ8+PABtVrNxo0bcXd3z8FWC8LXRDFJ+NsUCgX37t3D1taWYsWKAbBo0SJq1apFtWrVvvq8ZntgtVrN9u3buXPnDs+fP6dChQrUqVOHZs2aAWIRTiHrKBQK7t+/T/HixbG2tgZg4cKFtGnTBldX17/87rZt27h16xavX7+mfPny1KhRg+bNmwMio0LW+vKm8luFSu1dsZ4/f86ePXu4ePEiqamplClThiZNmtC+fXtA5FPIet/q+HyZU+3c3bx5k7Nnz3L69GnS09MpWbIkLVq0EBkVstzbt295+/Ytbm5uWFpa8uLFC/bt20evXr2+ubuVJntv3rzh2LFj3Lx5E5VKRdmyZencuTPOzs65cBRCXhYREUF0dDSlSpXC1NSUZ8+ecfr0aby8vChQoMCffi8pKYlVq1YREhJCSkoK5cuXp0OHDnKfSxBykygmCf8T7S1Unz59ypgxYyhTpgxDhw5l8uTJPH36lICAAL777rtvjtr48oZUU2DSEDeYQlZRqVS8ePGCCRMm4OHhwYQJExg2bBg3b95ky5YtVKpU6Zvf+7KD9OUTTpFRIStpnwP37dtHyZIlqVChwjc/+2U2NVOFjYyMMDExAUQ+haynfd0+duwYxsbGNGzY8Juf/TJ/sbGxcr4104NFRoWstHPnTpYvX463tzelS5emR48eNGjQgKlTp1K4cOFvfkeMLBZySnp6OkeOHGH+/PmMGTOGEiVK0LlzZ6pWrcr8+fPlB51fEudJ4Z9OFJOE/0lERAROTk7y3wEBASxevBg7OzsUCgWzZ8+mZs2aGBgY/OXvaD9l1+zyIghZISwsTH6y+PnzZ/bu3cvChQvljE6bNo26dev+ZUbFjaaQE7Q76Zp1kOzt7dm6dSsmJiZ/msE/y6fIrZDVtDPq6+vLo0ePcHd3Z8aMGRQqVOgvv6udR+0HUSKjQlZKSkpi+PDh3L59G7VaTZUqVfjll1/+qxFG2h12kU0hu4SGhrJ06VJ+//13dHV1qVq1KmPHjqVkyZJ/+T2RSeGfTJQ6hf+zy5cv06RJE3bv3i2/5u3tjYWFhTx8087OTu6k/1W9UnNy1NXVFSdKIcucOXOGrl27yotqWlpa0qVLF2xtbXn//j3u7u6UKVPmPxY7RSaFnKDppA8bNozg4GDGjBnDypUrMTU1lTve3/Jn+RS5FbKaJqNDhw7l7t279OnTh6lTp35VSPpWVrXzqPm3yKiQlSRJwszMDD8/P1JTU5EkCXd3dywtLQEy7Sb4LdojP0Q2hexSvHhxOnTogEKhQKlUUr58+f+q2CkyKfyTiWKS8H+mq6uLq6urvKuAJElER0dTrlw5GjVqxPXr1/ntt98ICQkB+MvOkCBkB0dHRxQKRaaplFFRUVSsWJGWLVty/fp1VqxYwcePH+X3RUaF3HTo0CFu3LjByJEjadKkCfb29vKOLlFRUbncOkHIWFD7xo0bDB8+nFatWlG4cGFUKhWSJBEWFgaITo+QOzS5+/TpE/Xr18fDw4Pt27ezZ88eYmNj0dXVFdd4IVdpCpqxsbG0bNmSqlWrsnbtWg4cOEBqamout04Q/ndimpvwP3n37h0ODg5AxgKbVatWJS0tDSMjI3nKW9u2benfv3+mBY7/2520BOF/pRmuHhMTg5WVFfBHRhUKBZ8/f+bw4cMsWrSINm3aMHLkyExz1cX8dCE3rFy5ks2bN3PgwAHs7e2Jiori6NGjHDt2jJcvX9K0aVN69OhB2bJlc7upQj61YsUKNm7cyNWrVzE0NOTjx48cP36c48eP8+bNG2rUqMHEiROxsrIS51EhR3wrZwqFAkmSGDRoELdv32b48OF07NiRggULyp/R7PYmCNnty4ympKSgUqmIiopiyZIlnD17lokTJ9K+fXuxLqfwr6T/nz8iCH/QzNvVFJKWLFnCqlWrmD9/Pq1atQIyprylp6ezfPlyALmglJCQwNWrVylQoAA1a9bMtWMQ8jbNxVczvH369OkcPnyYCRMm0LZtW+zs7GjXrh0qlYqlS5cCyAWlxMRELl++TIkSJShVqlSuHYOQt3254QCAnZ0dsbGxnDhxAnNzc9atW0dKSgpFixblp59+IjAwkIIFC4pikpAjvvXgx8nJieTkZNavX4+LiwtLliwhMTERJycn6tWrx+HDhzExMWHGjBmiEyRkO01Go6OjefnyJTY2NtjZ2cm7Yq1YsYLBgwezdOlSJEmiS5cumJmZ8fr1a27cuEG1atVwcXHJ3YMQ8jRNRmNiYggNDcXGxgZbW1vMzc0xNzdn+PDhSJKEv78/AB06dEBfX5/Q0FDu3btH3bp15YeigvBPJYpJwt9SsWJFatSowezZswHkgtLQoUPR0dFh2bJlpKen07hxY968ecOiRYtYsGBBbjZZyOM0BU/NsPf27dtz/fp11q1bh1qtpn379lhbW9OxY0d0dHRYsmQJAI0bN+bZs2csWbKEBQsWiGKSkG00haTt27fz888/o6enR/369Wnbti3z589HrVZTt25dWrZsSevWrYGM6Rvnzp1j+PDh8m5YgpBdNIWk9evX06tXL/T09ChfvjxNmjRh9erVpKamUr9+fVq0aMGPP/4IQHJyMjdv3iQ5ORlTU9PcbL6Qx0mShJ6eHi9fvmTIkCG8f/8eU1NTypQpw9SpUylWrBgmJiasWrVKLiglJSVRpkwZdu3axZMnT9i7d29uH4aQh2ln1Nvbm8jISFQqFc2bN6dz585Uq1YNV1dXfHx8AJg5cyZJSUk4OTmxb98+rly5wrlz53L5KAThPxPT3IT/mvaTyqioKGxtbQG4ceMGK1askLdf1xSUANasWcPChQsxMjJCrVbj7e3NkCFDcqX9Qt6nndHPnz9jbGyMiYkJz58/x9fXFx0dHfr27Uv79u2BjC3VDxw4wNy5c9HX10dXV5fBgwfj7e2dm4ch5ANnz55l8ODBdOjQgRkzZgAZnfFnz56hUqn47rvv5GkYERERTJgwAUtLSxYsWPDVqCZByA6HDx9m9OjRNGnShMWLF6Orq8u7d+9ISEggISGBihUryln88OED48ePx9zcnEWLFonp7EK20TwwiomJoUuXLtjY2NC8eXMiIiI4ffo0aWlpbNq0Sd4hS6FQMHToUC5evIixsTHm5uasWbOGMmXK5PKRCHmVJqNxcXF06NABe3t7fvjhB+Lj4wkMDMTR0RFvb28aNmwIwKtXrwgICODQoUOYmppiZmbG6tWrRUaFfwVRTBL+K9qd9FmzZhEeHk6tWrXo1q0b8NcFpYsXLxIdHY2NjQ1169YFxFxgIetpZ3T27Nl8+PCBBg0a0Lx5cwwMDP60oJSens7Tp0+5e/cuxYsXp1atWoDIqJC9Pn/+zIEDB1i4cCGtW7fG39//m4sXR0REcODAATZt2sTkyZNp06ZNLrRWyI8SEhJYt24de/fupWLFiixduvSb58Tw8HAOHjzIhg0b+OWXX+SRSoKQ1TTX5bi4OPT19Rk6dCiDBg2iWrVqAPz+++8sXryYyMhIAgMDM225fujQISRJonLlyjg5OeXWIQh5nCajnz9/Jjo6Gn9/f4YPH46npycAx48fZ+XKlejo6ODr6ysXlNLT0zl//jyxsbHUqFEDR0fH3DwMQfiviWKS8B9pKuyQsR7So0ePaNWqFV26dMm0peVfFZS0iU66kNW0Mzpw4ECePn1KvXr1GDhwII6OjnLm/qyg9CWRUSEraRc6tf8dFxfH3r17WbhwIW3atGHatGmZRnQcOnSIQ4cOcfv2bQYNGsSAAQOAzHkXhKzw5RpJmnW9EhMTWbt2Lbt378bT05MlS5agp6cnf/7YsWPs37+fW7duiYwKOSIqKopWrVphZWWFpaUlv/32W6aFiy9evMi8efO+WVAShJwQGRlJjx49sLS0JDU1lQMHDmS6pzxz5gxLlixBV1cXHx8fuaAkCP9Gorck/EeaG8JFixYRHBzMuHHjGDp0KM7OzkiSJG+3Wq1aNYYMGYKbmxtz5szh0KFD3/w90UkXskJ6err8b01GFy9eTHBwMKNHj2bMmDE4OjoiSRK6urqo1WpKlSrF4sWLkSSJjRs3smfPnm/+tsiokJU0nfSYmBj09PRQKpUAWFhY0L59e/z8/Dh48CBTp05FpVIB8Pr1ay5cuEBKSgpTpkyRO+lqtVp00oUsp8nos2fPgIx1vdLT0zE3N6d///507NiR4OBgfH195UJSaGgou3btQqFQiIwKOSY1NRVPT0/i4+OJj4+Xt1VXKBQA1K1bl1GjRmFvb0+PHj3kTAtCTilQoAAWFhY8f/6c5ORkkpKSAORrf+PGjfHx8UGtVrN8+XJOnTqVm80VhL9FjEwSMrl+/ToVK1bEyMgo0+upqakMHDgQHR0dVqxYgZmZWab3tUdy3LhxgyVLlnDv3j0OHz6Mi4uLuLEUssyVK1f47rvvMDc3z/T0Oy0tjX79+mFoaMiqVasyPakE5MKnZoTSkCFDSE1NZdOmTbi6uubGoQj5yPTp09m2bRtnz57FwcEh09bUsbGx7Nq1i4ULF9KzZ0/GjRuHrq4ukZGR6OjoYGdnB4gRc0L2mjFjBmfOnGHWrFnUqFEDyDxCacWKFWzevJnmzZszZ84c9PT0CAsLw9DQEHt7e0BkVMgZISEhrFy5kqNHj9KtWzcmT54MkOm8eunSJSZNmoSenh4nTpzAwMBA3IsK2UZzP6o5ZyYlJTFy5EjOnz9Pp06dmDBhAsbGxpky+vvvv/Prr7/i5OTEunXrxMYFwr+SKCYJstDQUJo3b07VqlXZtGlTpiHvnz9/pl27dtSqVUvewvKvXL58meTkZJo0aZKdTRbymWfPntGxY0dKlCjB7t270dfXl28Oo6Ojadu2LfXq1cPf3z/TBVu76JSamoqxsTFPnjzh2bNntG3bNrcOR8hHjh07xrJly0hISGDnzp04Ojpmymh4eDh9+vQhPDyc9u3bf7WGkpg2JGS3PXv2sHHjRkxMTBg5cuRXBaXY2Fi6du3Kq1evqFevHitXrsx0nyAyKmQ1zSg4TVdFO1/aBaVevXoxbtw4IGOEkuZh0tWrVylatChFixbN+cYL+YImo98qpCclJTF8+HDu3r1Lp06d8PHx+aqgdOHCBUqUKCEyKvxriS1hBJmVlRVjx44lPT39q51Y9PT0MDU15cWLF8THx1OwYEEg883j+fPnefPmDV5eXtSuXVv+rnhSKWQVFxcXevTogZ2dnXwhhowcFipUCFtbW16+fAmAgYGBnD1NRq9evUpkZCStWrWidOnSlC5dGhAZFbLWtzrVLVq0wNDQkHnz5tGpUyd27dqFo6Oj3PEpWrQoNWrUwNramn379tGiRYtM51HRSReyknZGNZ2hDh06YGxszMqVK5k3bx6jR4+mRo0a6OnpkZ6eTqFChfjuu+8wNjbm+vXrXLhwIdNaHyKjQlbS5PLNmzds2LCBFy9eYGFhgaenJ127dsXV1ZVBgwYBsGnTJgDGjRuHoaGhfF6tWbNmLh6BkNdpZ3T9+vW8evUKHR0d2rRpQ7Vq1XB2dmbJkiX4+Piwa9cuJEnC19c3U0GpXr16uX0YgvC3iN6TQHh4OEqlEgsLC7p27Ur//v0BWLt2rTwXvWDBgnTp0oWHDx9y+PBhIPPN6Lt37zh06BCvXr0iMTEx0++LTrrwd3348AGlUomRkRF+fn707NkTgGXLlpGYmIiOjg66urq0bt2ae/fusXz5ciAje5onmu/evWPTpk08evQItVqd6fdFRoWsolKp5POiUqkkMTGRtLQ0IGOdhNGjR2Nubk6nTp0IDw+Xn6BHRETII+WOHTuWqZAkCFlJO6NApmt2q1atGDhwIKmpqcyfP58rV66go6ODvr4+kZGRvHv3jm7durF582axaKyQbSRJQk9Pj5CQEDp16sS1a9cwMzPjw4cPbNiwgR49epCYmEjJkiUZOnQoLVu2ZNOmTcydOxfgq2nugpDVtDPauXNngoOD5Yecv/zyC7/88guPHz/G3NycpUuXUrFiRXbv3s3SpUtJSUnJ9EBUEP7NRA8qnzt27Bht27bl6NGjpKenY2RkhCRJXL58mQULFjB27Fi5oFS/fn0aNGjA9OnT2bx5M1FRUUDGQrH79u3j4sWLeHp6Ym5unpuHJOQx586do2nTpgQFBWXacejEiROsXLkSHx8fEhMT0dXVpW7dutSsWZN169axePFiIONpeUREBHv37uXu3bvyk3VByGra+Zw3bx59+vShZcuWDBs2TN6QQFNQsrCwoEOHDvz+++9cuXKF/fv3ExERgbu7OyVKlAD4qugpCH/Xlxnt2rUrTZo0wcfHhx07dgDQpk0bBgwYgEKhYNq0aRw5coT79+8TGBjI06dPcXd3p0KFCoDIqJA9dHR0iI+PZ8KECZQqVYp58+axdu1a9u3bh5OTE0+ePOH27dtIkkTx4sUZNmwYbdq0YcOGDSxatCi3my/kUZoNMiAjo3FxcUycOBE3NzdmzpzJxo0b2bJlCyVLliQkJIS4uDiUSiVmZmYsXbqUypUrs2HDBlavXp2LRyEIWUusmZTPxcbG0qZNG/T09Bg5ciTNmjVDT0+P2NhYTp48yZw5c6hVqxYLFizA0NCQ+/fvs27dOk6dOoWjoyP29vZER0fz9u1bhg8fLu/mIghZJSQkhHHjxhEVFcXMmTOpUaMGurq6pKWlsWnTJgIDA3FxcWH58uWYm5tz//59li1bxqVLlyhWrBi2trbExMTw5s0bkVEhRwwcOJC7d+9Srlw5ChQowO3bt/n48SP9+vXDz88PXV1drl27xtq1a+WRHzo6Ovj4+DBw4MDcbr6QD3h7e3Pv3j1Kly6NjY0NV65cITExkVatWsnrIp45c4YtW7Zw/fp1+Xt+fn7iHCpkqSNHjtCqVauvXn/16hVeXl74+PjQoUMHIGPH1nXr1jFt2jSaNGmCubm5PE39xYsXbN68GS8vL0qWLJnThyHkYTt27KBz585A5oL88+fP6d27N76+vnTs2BGAhQsXsn79en755ReaN2+Oubk5aWlpGBkZkZiYyIQJE/D19ZUfGgnCv54k5FtKpVKSJEmKjY2VfvjhB6lu3brS4cOH5dfj4uKkHTt2SBUrVpSGDBkivx4ZGSnt379f6t27t9SpUydp4sSJ0tGjR+XfValUOX8wQp4WGhoqde3aVapVq5Z0+fJlSaFQSJIkSWlpadKqVaukOnXqSF5eXlJ8fLz8+X379kl9+vSR2rVrJ40ePVpkVMgRmzdvljw9PaVDhw5JCQkJkiRJ0sOHD6XJkydLHh4e0sKFC+XPJicnS6dOnZL2798vXb58WX5d5FPITlu3bpUqVqwo7d+/X0pMTJQkSZJev34t+fr6SqVLl5YmT54sf/b9+/dSUFCQtGPHDunq1avy6yKjQlY4ePCg5O7uLi1atOir927evCmVLVtWevDggSRJkjRnzhypbNmy0s6dO6Xk5GRJkjLuAXbv3i2lpaVJkiTJ9waCkFV27twpubu7S1OnTpVf0/SHLl26JFWqVEkKCQmRJEmSZs+eLWc0JSVFkqSMc+X58+fl+wG1Wp2zByAI2UwUk/I57cJRkyZNpDp16kiHDh36ZkFp8ODB8gVbkiQpJSVFSktLy3RTKW4whezy6tWr/6qgpLlga6Snp4uMCtnmyzxNnjxZqlevnhQTE5Pp9bCwMGnChAmSu7u7dPr06f/69wTh7/pWRuvXry93yDXn0oiICGnIkCFSpUqVpEOHDkmS9O2Oj8iokFUiIyOlhQsXSqVLl85UaJckSXry5IlUtmxZaf/+/dLChQulMmXKZOqkS5IkzZs3T+revbsUGRmZ000X8on3799L06ZNk77//vtMhXZJyrgvLVeunBQYGCitXr1aKlOmjLRjx45MGZ0+fbrUsWNH6dOnTznddEHIEWLNpHxOX1+f9PR0ChYsyO7duzExMWHevHkcP35cfr158+aMGzeOq1evMnLkSHkNJSMjIwwNDTMtXiwWMhayS/HixZkxYwbFihVj7Nix3LhxA6VSiaGhIX369JG3rB46dKi8oKxmOLL2YrMio0JWUalUcp6eP3+OWq0mLS2NtLQ0LCwsgIxt1QGKFi3KTz/9hImJCRcvXgSQF4fXJvIpZCXtjEZGRgIZW6enpqbKC8Pr6+sjSRKOjo74+Pigq6vL3bt3gW/v0CYyKmQVOzs7unfvTr9+/Vi9enWm9Y48PDxo2rQpEydOZPXq1fj7+9OqVSt5zcN79+5x69YtHBwcKFCgQG4dgpCHSZKEvb09AwcOpEWLFpw8eZIpU6bI79vb29OyZUtmzpzJwoULmTt3Lq1bt5YzeufOHZ49e0bx4sXFWp1CniXuCPIp7U6Mvr4+KpVKLigZGxv/aUEpKCiIESNGkJqaKrYBFrLVtzraxYsXZ/r06X9ZUAoLC2PQoEEkJibK89pFVoXsoMlXjx49mDdvHhEREXh4ePD582e2bduGJEno6+ujVCoB8PT0xNXVlefPn6NUKkUuhWynyWjnzp3p168fiYmJuLq68vnzZy5fvizv7CZJEmq1Gjc3N0qWLElwcDBKpfKb52FByEqFCxemR48eDBgw4KuCUteuXalatSqGhoaYmZnJC75funSJpUuX8u7dOwYNGoSpqWluNV/IwzTnRltbW7y9vWnZsmWmgpKJiQnNmzenePHimJmZoVQq5SxevXqV5cuXExYWhre3t8iokGfp53YDhJyXnp6Ovn7G//QJCQno6OhgZmYGIBeUOnbsyLx58wBo3ry5XFBSq9X8+uuvXLt2jfr16+fWIQh5nHZGNTu16evrY2hoiIuLCzNmzGDixImMHTuWOXPmUK1aNbmgpFKpWLt2LUFBQfzwww+5fCRCXqSdzxs3bhAdHU3//v1xdnamY8eObNu2jd9++w17e3saNWokbwEcHh5OYmIi1apVE9sCC9lKO6NnzpwhMTGRrl27YmxsjJeXF2fOnGHhwoXY29vz3XffyXmMiIggISGBChUqiIwKOUZTUALkna5GjBhB5cqV6dWrFwqFgmHDhlGiRAkkSSIhIQF9fX3WrFmDi4tLLrZcyOu+LCgBHD16FEmSmD59OvXq1SMlJYW1a9cybtw4Nm/eTFpaGikpKahUKlavXk3x4sVz+SgEIfuI3dzyGc2uFwDTp0/nzp07KJVKHBwc8Pb2plixYlhZWREXF0fHjh1JTU1l9OjRNG/eHH19feLi4vjw4QOlSpXK5SMR8irtjE6bNo2HDx8SHx9PyZIl6datGzVq1ADg9evXTJgwgbCwMLmgZGBgQFpaGs+ePZO3rhaE7LJ161ZevnzJo0ePWL9+PQULFgTg6dOn9OvXDwMDAzp37kzPnj0JDQ3l9OnTrF27ltmzZ39z9yJByGr79+8nPDyc69evs3btWkxNTVGr1dy4cYNff/2V1NRUBgwYQMOGDUlISODw4cNs3LiRWbNm0bJly9xuvpBHSZL0zZGZkZGRbN++nTVr1jBgwAD8/PwA+PDhA8ePH+fBgwekp6dTqVIlGjdujJOTU043XcgntDOq/e8PHz4QEBDAsWPHaNKkCdOnTwcyrvv37t3j3LlzGBoaUq5cOVq0aCEyKuR5opiUj2ifDIcNG8aVK1fw9PREV1eXR48ekZaWRp8+fWjXrh1FihSRC0rp6en4+PjQokWLTE8qtTv9gpAVtDM6ePBgrl+/TsWKFTEwMOD+/fvExMQwevRounfvjpGREa9evWLy5MlEREQwY8YMvv/+ewwNDeXfExkVssvx48cZMWIEDg4O1KxZkxkzZshThfT09Hj58iXDhw/n1atX6OjoyOslDBo0SGytLuSIs2fPMnjwYExNTalbty6LFy+W30tPT+fu3bssXryYW7duoa+vj5GRESqVisGDB4uMCtlGs5ZhfHw88fHxfP78GQcHB6ytrQF4//49gYGBXxWUIPOIO0HILpqMxsXFER8fT2RkJGXKlEFPTw9jY2Pev3/PmjVrvioogbjvFPIfUUzKJ7RPbprh7j179qRt27bo6+sTHh7OvHnzOHPmDL6+vnTu3JmCBQsSHx9P27Zt+fz5M3v37qVEiRK5fCRCXqW5eEPGkx9NDps0aYKJiQl37txh27ZtHD9+nDFjxuDl5YVarebNmzeMGzeOx48fc/LkSRwcHHL5SIT8Ys2aNSxcuBB9fX02b96Mp6cnkLmzdOXKFZ48eYKdnR0uLi7UqlULEDecQvZLSkriwIEDLFiwAAMDAwICAqhUqdJXn9u7dy/v37/H3Nwcd3d3efSnyKiQ1TTnxpCQEMaPH09ISAhJSUk4ODjQsGFDJk2aBGQeoTRw4EBGjBgB/PmIJkHIKtoZnThxIq9evSI+Pp7ixYvzww8/0K1bN+zs7DIVlJo2bcq0adMAUCqVGBgYiKwK+YYoJuUzw4cPx8zMjBcvXrBy5UpsbW3l9xQKBSNHjuTGjRts3boVNzc3AOLi4jh79izt2rXLrWYL+cjUqVP5/Pkzt27dYseOHTg7O8vvvXnzhsWLF3Py5Em2bNlC5cqVAQgJCeHFixc0a9Yst5ot5GF/1alet24d8+fPp27duowcORJ3d3fgr5+gi066kNX+LFPx8fEcPnyYWbNm0ahRI0aOHCmfU7UL+P/t7wnC3xUWFkbnzp0pUaIEtWrVwsnJiV27dnHz5k1q1arF+vXrgT9GKG3YsIFu3boxfvz4XG65kF+Eh4fTqVMnSpQoQY0aNbC1teXgwYPcu3eP77//nhkzZlCkSBEiIyNZvXo1p06dokaNGsyfPz+3my4IOU6MFc3jtCvjz58/JzQ0lHfv3lGwYEGSk5ORJAlJktDV1cXQ0JAhQ4Zw8eJF1q9fz+zZs1EqlVhYWMiFJHGDKWQ17YxGRERw/PhxDA0NsbS0xMrKCvjjSU+xYsXo1KkTZ8+e5dixY1SsWBE9PT1cXV1xdXUFREaFrKVdFHrw4AGJiYmYmJhQpkwZDA0N6devH6mpqSxfvhwTExOGDh2Km5ubvN262FpdyG7aGX3y5AkJCQno6elRuXJlChYsSMeOHVEqlcybNw8jIyOGDRtG0aJF0dPT+9Pzpcio8HfFxMTI13ANSZIIDAxET08PPz8/eTRnjRo1CAwMZNWqVQwdOpTly5dTpEgRunfvTnJyMvv372fgwIFf/Z4g/B1fXqM1U9W3bt2KkZERfn5+8kPLTp064e/vz759+5gzZw5Tp07F3t6eQYMGkZKSws2bN/n48SOFCxfOrcMRhFwhikl52JdPHUuVKsWECRNYu3YtV69e5dSpUwwYMAAdHR35sx4eHhQrVoyPHz8CfLWbi7jBFLKSdkaTkpJwcnJi69atjBw5khcvXrBixQrGjh2LgYEBCoUCQ0NDatSogbOzMyEhIaKjLmQrlUold9L9/Py4efMm0dHR6Onp0bBhQ9q1a0eDBg0YOnQourq6LF26FEmSGDZsGG5ubmKIu5DtvsxocHAwkZGRGBsbU7lyZUaOHImHhwddu3YFkHdp1RSUxPlSyA4jRowgNTWVKVOmUKRIEfl1tVrN8+fPsba2lgtJSqUSGxsbunfvTlxcHNu2bWPfvn20b99e3kFr8ODBopAkZKmRI0cSGxvL2rVr5fOgjo4Oenp6hIaGYmFhIReSNPefEydOJCEhgWPHjtGqVSsaN26Mra0to0aNQpIkUUgS8iVxF5GHaTrpgwcPZvfu3UDG059Bgwbh6enJwoUL2bVrV6bPfvjwgfT0dExMTFAoFIhZkEJ20uTO19eXCxcuABlFz8WLF+Pq6sru3bvZsGEDgLywdkREBAqFAmtra9LT03On4UK+oMnn8OHDuXbtGr169SIgIID58+dz6tQpli1bxv3794GM8+zw4cM5deoUixcv5unTp7nZdCGf0M7o9evX6dKlC+vWrWPy5MkEBwczefJkwsLCMDQ0pHPnzowePZoTJ06waNEi3rx5k8utF/KqYsWKcf369a+u0To6OlhYWBAdHU1kZCSAvL6MpaUlPXv2xNjYmCdPnsjfsbGxEYUkIUtp1ul68OABb9++lV9Xq9WkpqYCGVOEP3z4gFqtxtDQEJVKBcD48eMpUKAA58+fl79jY2MjCklCviWKSXnchw8fOHv2bKaiUNWqVeXhxVOmTGHp0qXcuXOH27dvs3nzZl69ekXDhg0xNDQUT9aFbBcdHc2JEyfkG0uVSoWrqyuLFi3C1taWpUuXMn36dN6+fUtQUBB79uwhLCyMWrVqZdq5TRCyw9WrV3nw4AEjRoyga9eu1KtXj2LFiqGrq0vFihVxdHRErVYDGQWlIUOG8Pvvv/Phw4dcbrmQX1y7do3g4GB8fHzo1q0btWvXxt7eHqVSSalSpTA3NwfA2NiYTp064evry7FjxwgLC8vllgt50Zs3bxg2bBjHjx+naNGifPz4Ub6+6+rqUqZMGfm6n5SUBCCfQ52dnbG1teX9+/e51n4h70tKSsLPz4/Dhw9TtGhRoqKi5Cm/xsbGNGvWjPfv33PhwgV51JLmvwYGBpiamhIbG5vpdUHIr8T/A/Kw9PR0ChUqRPHixXnw4AGQMVQToEqVKvJc4JUrVzJgwAAWL17MjRs3GD16NO3btwcQI5OEbKVSqTAxMcHe3p53794BGRdmtVpNqVKlWLJkCU5OTmzbto0ePXowZswY7t69y4gRI+SMCkJ2evfuHQkJCXz//feYmJhw7do1OnfuTPPmzRk4cCDW1tbo6uqSkJAAZEwf2rVrF/Xq1cvllgv5RXh4OCkpKTRs2BBzc3OCgoIYMmQIzZs3x9fXFxsbG/mzpqamdOrUiX379lGnTp1cbLWQF127do02bdoQERGBnZ0dMTExtGrVioULFxIREQFAv379qFWrFqtWreLkyZPExsbKI+yCg4NJSkqiVKlSuXkYQh529epV6taty927d7Gzs+Pz58+0a9eOESNGyCPp6tWrR/369Zk2bRpHjx5FrVZnWn82PT1dXqdT9JOE/E4Uk/7FtE9garX6q+HE+vr6GBkZUapUKW7fvg1kTBXSfK9KlSr4+PhQs2ZN0tPTqVOnDrt376Zv377yb4qRScLfoZ1RSZK+yqienh5mZmaUK1eO4OBgEhMTgYyCkkqlws3NjSVLluDq6oparaZNmzYEBAQwYMAA4I+nmYKQFbTzpPl3amoqurq6ODs7c//+fQYOHMgPP/zA2LFjsbOzA2DTpk1s2bJFznf58uW/+j1ByArfypShoSFqtRoTExPu3r3LoEGDaNy4MaNHj5YzGhAQwJQpUwAwNzenTJkyf/p7gvC/SktLIzU1lQ0bNpCeno6VlRW9evXi2LFjrF+/nvDwcCBj19aSJUvy66+/MmfOHK5cuUJgYCBLlixBrVbTtm3b3D0QIc+Ki4sD4Pz58/LUtW7dunHx4kWmTJmCJElYW1vTr18/PD09GTt2LNOnT+fEiRPs2rWLBQsWkJqayk8//QQg+klCvicW4P6X0ixcnJKSgomJCbq6uvJQyzlz5uDk5ISdnR1VqlTBzs6OZ8+ekZiYiJmZGTo6OvLuL9WqVUOlUrFixQoWLVqElZUVHTp0EDeYwt+mnVEDAwP09fXlhWIXL15MgQIF+O677yhTpgw2NjY8ffoUHR0d+cKso6ODJEm4urqyYMECRowYwZEjR7Czs6NHjx65eWhCHqTZ1RIypgdrOuFVqlTB2NiYwYMHExQURLNmzfDx8cHW1haA169fc/LkSYoWLYpSqURfX1/OsBj+LmQl7Yy+e/cOBwcHAOzt7TExMWHGjBmcOHGCpk2b4ufnJ2c0JCSEmzdvYm1tTXJyMqampvJviowKWalGjRp8//33XLhwgT59+lCsWDEGDRqEiYkJs2fPRpIkBg4ciLOzMytWrMDf358jR46wf/9+TExMcHR0ZOPGjTg7O+f2oQh5VPPmzTly5AgHDhygT58+WFpa0qVLF0xMTFiwYAGSJDFr1iyqVKnC2LFj2b9/P1u3biUwMBBzc3OKFCnCpk2bREYF4f8TxaR/IU0n/ePHj3Tt2hVfX19atmwJwJ49e9i3bx+pqamoVCosLS1JSUkhMTGRjRs3UqZMGb777jv09fUpVKgQkHHx19PTY8mSJUyZMgV9fX3xVEj4WzQZjYqKwtfXl65du9KqVSsATpw4webNmwFITk7GwMCAwoUL8+7dO+bOnUuLFi2wsbGhSJEimJqaIkkSHh4eLFq0CD8/P3nnjW7duomOkJAltLdH/+WXX7h//z7z5s3D1dUVJycnqlWrxpEjR3Bzc2Ps2LHyYrCRkZHs37+f8PBw+vTpg4mJSW4ehpCHaWd08ODBpKamMmrUKMqUKcP3339P9erV2b9/P2XKlKF///5yMTQqKopDhw7x/Plzpk6dmqmQJAhZSbNQsa+vLz169GDfvn2MGDECgF69egHIBaUBAwbg6OjIvHnz6NOnD58/f6ZgwYI4ODiIxbaFbKM5j7Zr147z58+zfPlyJkyYgKWlpbx0woIFCwCYNWsWZcuWpWzZsvz0009ERUVhZmZGiRIlREYFQYuOJCZ7/qtoF5J++ukn7O3t+eWXX+Qh65BxsgwPDyc6OpobN24QHx/Pxo0bATAxMSEtLQ1HR0dKly5NwYIFmT59Ojo6Oty8eZNly5Zx48YN5s2bR+vWrXPrMIV/Me2MtmvXDltbW2bPnp1pDYS4uDhUKhVPnjzh5cuXvHnzhu3bt8vbsurq6lKsWDHs7e0pUqQIY8aMwdzcnOfPnzNy5EjevHnDxIkT+fnnn3PxSIW8QDNKEyAmJoYJEyYQEhJCsWLFmDhxIsWLF+fDhw/4+fnx6NEj6tSpQ69evQgPD+f69escOnSIkSNH0qdPn1w+EiGv0s5oWloa06ZN4/Dhw7Rs2ZJu3bpRrlw5lEolQ4cO5cKFC7Rr144OHToQFRXFlStX2L9/P35+fvIUdkHITp8+fcLPz4+QkBDWrl1L6dKl5fc2bdrE7Nmz6dy5M3379qVo0aK52FIhv0pMTKRPnz7ExcWxYcMGHB0dgYx703379rFgwQJat27NjBkz5PW8BEH4NlFM+hfR7qS3b98eBwcHJk2aJK/P8WfevXvHoEGD8PT0pG3btgQHBxMWFsa1a9do166dvP4MQFBQEBs2bGDs2LGULFkyuw9JyGO+zKijoyMTJ078jxl98eIFvXv3pnPnzlSpUoWQkBDu3bvH48ePadu2Lf369ZOfKD158oQpU6Ywd+5cihcvnkNHJuRF2qM9hg4dyufPn3nz5g2mpqbyjoHjx4+nZMmSfPjwgeXLl3PhwgWio6PR1dXF1dWVjh070r17969+TxCygnamfHx8CA0NpUCBArx+/ZpPnz7RrFkzBg4cSOnSpZEkifHjx3Pu3Dl5XZCSJUvSuXNnkVEhy0mSJE/p/TJXx48fZ8SIEUyePJlu3brJ9wbwR0Gpe/fueHl5iYKSkCM0edVkNSgoiH79+jFixAj69esnf067oNSuXTt++eUXUVAShL8gikn/EpqTn6aTbm9vz5QpUzJ10qOjo3n16hXVqlXL9F1Jkmjbti3Ozs4sW7ZMfl2hUMhbq2tf6FNTUzE2Ns6BoxLyEk2GoqOjadeuHQ4ODkycOJEKFSrIn/n06RMfPnzINJJOo3PnzlhZWbFy5cpv/r5mHS9dXd1M2RWEv2vy5MmcOHGCCRMmUKlSJSwsLFixYgWHDx+mXLlyckEpOTmZuLg4njx5gq2tLRYWFnJHSHTShew0efJkTp48yahRo6hfvz6fP3/m999/Z+nSpTRp0gRvb2/5vBoSEsKnT58wNzenYMGCODk5ASKjQtY5ceIET548oW7dulSuXFl+XXMfoFar6d+/PyEhIezcuVOedqmxefNmZs6cSe/evRk5cqQ88k4QssqRI0e4f/8+P//8M87OzhgYGMjnQEmSiIqKYsSIEXz48IG1a9dSokQJ+btxcXHs379fLnpOmjQpF49EEP7ZxNn7X0JXV5fPnz/TpUsXChUqxPz58+VhmZCxNbCXlxeNGzemQoUKcjFIc2EvXbo0jx49QqFQYGBggCRJ8sVbkiT09PTkqr0oJAn/C00hqX379hQqVAh/f/9Mo9vCw8Pp0KEDnTp1omTJkl8VgxwdHXn8+LH8t3bHR3vhWQADA4NsPhohv4iKiiI4OJgaNWrQokULjIyMAJg0aRKWlpasX7+eWbNmMWnSJIoXL46pqSlFihTJ9Btf5lMQslJMTAw3btygVq1atGvXDgMDA2xsbHB3d6dQoUJMmzYNXV1d+vbtS/ny5XF1dZW3rdYQGRWySkxMDPv37+fChQts27aNFi1a0KVLF1xcXDAxMZGv3fXr1+fKlSscO3aM3r17Z7qm9+zZU94ERhSShKwkSRKxsbEEBgZy+/Ztjh8/Tq1atRgyZAh2dnYYGhqio6ODnZ0d7du3Z9KkSdy7d48SJUrIU4otLCxo06YNBgYGVK9ePbcPSRD+0cSdxb/I4cOHiYiIwNDQEF1dXfkCrCkk2dra0rVr10zFIM1oo0qVKhEWFsbbt2/R0dHJtPub9u5ZgvB3XL58maioKCwtLVEqlfLrmoyWKFGCdu3aZSokaQZHVq9enffv3xMWFgZk3mXoy2yKrApZRV9fn8TERMzNzeVCkia7Q4YMoVWrVly5coUZM2YQEhICfL2dusijkJ2USiVxcXGYm5tjYGCASqWSM9e1a1f69+/PqVOn2Lp1a6aCvDaRUSGrWFlZsWLFCjZv3kz16tU5evQoXl5ejB07lhcvXpCamgpAjx49KFOmDAcOHAAyruna586uXbuK5RSELKejo4OlpSWLFi1i3759uLm5ceLECdq2bcuvv/7K1atX5c926NCBihUrEhAQQFxcHPr6+vI9qWaXty8L84IgZCaKSf8iPXv2ZOjQobx9+5Zx48YRExNDYmIiPXr0oEiRIsyePRsXFxfgjw66hoWFBWlpaSQmJuZCy4X8om3btowbN44bN26wbNkyQkND+fTpEz179sTe3p5Zs2bJQ4k1GdV0cqytrUlNTSUlJSXX2i/kL5IkYWBggJWVFffu3ZMLmQYGBigUCiBjFyIbGxsiIiKYN28e4eHhYoSHkKNsbW1xcXHh7t27KJVKeRqRpmNeu3ZtjIyMOHLkCBs3biQ8PDyXWyzkVZrrtp6eHtWqVWPmzJns2LGD77//nqCgIDp27MiUKVM4deoUkHHfGhoayrp16wDEuVPIMba2tpQpU4bVq1cTEBBAixYtOHjwIH379mXChAmcOXMGgNatW/P27VuOHj361W+IvArCfyb+X/IvoVKpgIxFYrt27crLly8ZMGAAzZo1w8XFhWnTpmUqJGk66JqOebVq1Zg7d+5/XAhZEP5Xmo5Nr169GDNmDGfPnmXatGm0b98eJycnZs6cSbFixYDMGU1OTiY9PZ1SpUoxf/583N3dc+0YhLxLcw7VpqOjQ4ECBRgwYAChoaEEBgaSkJAAII+ee//+PYaGhtSsWZNbt26xa9cu+cm7IGSlb2UUMnLas2dPQkJCmDp1KoC866Xm35UrV2bIkCEcPnyYY8eOAV8/VBKEv+vLkewFCxbEzc2NpUuXsnr1ajp37syZM2cYPnw448aNIyoqCisrK27fvk18fHxuNl3Ih9RqtTxVbfr06axdu5ZevXpx6tQpfH198fHxwcnJCXNzc86fPw+IUZyC8H8lFuD+F9Geb7506VICAwNRKpUsX75cntOr/ZnY2Fg2btyIUqlkzJgx3/wdQchK2tnS7NhiZmbG3LlzadSoEZB5sffY2Fj27dtHREQEkydP/tOdYQTh79DO3Lp164iLi6NQoUL8/PPPmJubk5aWxsKFC9m8eTM9evSgQ4cOlCpVisjISAIDA3n8+DFr167Fx8eHu3fvsm/fPqytrXP5qIS85MuMJiQkYGlpSfv27SlYsCAfPnxgxYoV7Nq1i3bt2jFu3DgsLCyIiopi48aN3L17ly1btsiLyR88eBBnZ+dcPiohP/jyen3nzh2uXLnCtm3bMDIy4tOnTyiVSlavXk29evVysaVCfvVlRl+/fs3mzZs5c+YMcXFxmJqa8vnzZ/z9/fnpp59ysaWC8O8jVr37F9HMN9fV1WX48OEAbN++nWXLluHs7IyDg4P82djYWHbt2sXq1aszbXmp+R1ByA7aGe3Vqxd6enr4+/uzZ88eHB0d8fDwyFRI2rlzJ4sWLcLPzy/T0yCRUSEraTLXr18/rl27hrGxMcnJyZw8eZJx48bh6elJ//790dPTY9OmTRw7dowSJUoQHx/P06dPGTFiBADt27fn5MmT3Lx5k2bNmuXmIQl5jCajAwYM4OrVqxgZGZGens6WLVtYs2YNrq6uckZ3797N9evXKVasGImJiTx48IAxY8agr69PzZo12b9/PyEhIaKYJGSZv3rAo71Rho6ODpUqVaJSpUp07NiRTZs2cfPmTR4+fCjvKigI2UF7xPuXf2tnV61W4+Liwrhx4xg+fDhr1qzh/PnzqNXqTDsTCoLw3xEjk/6FtJ9gLl26lG3btuHq6srcuXNxcnIiJiaG3bt3s2jRInx9ffH29s7lFgv5jfaN58aNG5kzZw7169fHx8eH0qVLExcXR2BgIIsXL2b48OEMHjwY+PpmQBD+Ds3OLADHjh1jyZIl+Pj44O7uTmRkJNOmTUOSJKZMmULt2rWRJImLFy+ydetWYmJiKFSoED/88AOdO3cGMkaMLFu2jC1btlChQoXcPDQhj9DO6IEDB1i2bBnDhw+nWrVq3Lp1i3Xr1vHx40dWrlxJxYoV+fTpE48ePWLLli28f/8eKysrWrRoIWd0w4YNLFu2jLVr11KlSpXcPDQhj9Bczx8+fEhsbCy1a9f+j9/R3KcqlUpSU1NJTU2lcOHCOdBaIT/S5O358+c8ffqUH3/88f/0/ZcvX1KoUCFsbGyyqYWCkHeJYtI/lHbBCL7uZGt31pctWyYXlCZOnMjt27fx9/fP1EkX04aErPZlpv4qo5qCUqNGjejVqxcPHz5kzpw5IqNCjrhw4QJ3797l0aNHLFy4EHNzcyBjl8GBAweiVCqZMmUK33//PYaGhiQnJ6Ovr09qaioFCxYE4OHDh8ycOZPExEQ2bNggbjqFLHXmzBni4+O5fPkyM2fOxNjYGJVKxb1795g9ezbh4eEEBATw3Xffyd9RKBQolUrMzMyAjIzOmDGD1NRU1q9fL6ZiClnm3bt3/Pjjj7i6urJy5UqRLeEfJzw8nC5dulC5cmVGjRpF0aJF/+N3xH2nIPx9opj0D6TdKX/27NmfLkj8ZUFp586d6OrqEhUVxbBhwxgyZMhXnxOErPb06VM8PDy++d63CkqOjo68e/eOoUOHiowK2W737t1MnjwZe3t7WrZsyejRo4E/MqcpKKWnpzN58mS5oKRt6dKl3Llzh8ePH7N582axSLyQpXbu3MnUqVMxNTXlp59+YuLEiZkeKN25c4dZs2YRERFBQEDAV6PiJEli06ZNnDlzhpcvX4qMCllCk0FJkti+fTuHDx9mzJgxeHp65nbTBAHI/OD99OnTrF69milTpoiRw4KQg0Tv7R9IU0iaMGECU6dOJTEx8Zu7smjWpwEYNmwYP/30E58+fWLs2LGiky7kiJEjRzJnzpw/fV87o71792bs2LG8ffuWESNGiIwKOaJRo0YMGDCAyMhILl68yJs3b4CMbEqSRNGiRVm9ejVGRkZMmTKFy5cvy+dbSZJ49uwZd+7cIS0tja1bt4pOupDlqlatSo8ePdDR0eHx48ekpKSgp6cnnzsrVarE+PHjcXZ2pm/fvty5cyfT94OCgrhx4wY6Ojoio0KW0dPT4/Xr1/j5+fH48WNKliwpF5LEc2jhn0BPT483b97QtWtXjh8/TunSpeVCksioIOQM0YP7BytcuDBPnz7lw4cP6Ojo/MeC0ogRI9i+fTu9e/cGRCddyH5ly5bl+vXr3Lhx408/82VB6cCBAwwYMAAQGRWy1rfOkVZWVnh5edGvXz9evHjBnj17+PTpE4B8Xi1atCgrV64kPT2d2NjYTNtfu7m5MW/ePFatWoWbm1uOHo+Q92hnVKVSAVCiRAm6detG27ZtuX37NosXLwYyzp2az1SqVInRo0djY2PD8+fPM/1mzZo1mTBhAitWrBAZFbLU48ePOX36NHv37iUpKUl+XaxtKPxTXLlyhSdPnnD69Gk5lwqFQmRUEHKImOb2D6SZ5hYVFUWPHj1wc3Nj4cKFX0290PblGkuiky7khCdPnjB06FC+//57pkyZgpGR0Z9ewDWZ1ORbZFTIStrnwPT0dFJTU+W1kQBiYmJYtWoVW7duZcCAAfTs2VNe90OTycTExEzfEYSspJ1RSZJISEiQ1+QCePPmDRs3bmTHjh3ySE7IfO6Mjo7OtJCx2LRAyE6JiYmcOXOGFStWkJ6ezvLlyylbtmxuN0sQZJpdLzdt2oRSqWTXrl04OTl91S8SBCF7iJ5cLkpPTwf+eDqpoanvWVlZUbNmTe7evUtISAiAPMLjS1+eMEUnXcgKmrx9mVFNdkuXLk3jxo05efKkPKLjz+rTmkx+a6tWQfg7tG8a58yZg5eXF82bN2fOnDncvHkTyDifDho0iO7du7NmzRo2b95MTEwM8EcmNYWkPzvPCsL/Sjujc+fOpUuXLrRu3ZpZs2bx7NkzAIoVK0bv3r3p3LmzvMYc/DFCSUdHRy4kac6zopAkZJVvnffMzc1p0KABgwcPJiUlBX9/fyIiInKhdYLw7Yzq6+vTo0cPevXqRVpaGn369OHTp0/o6el9de8qCELWE725XHDu3Dkg4wSoVCrlG8y7d+8Cf3Sy9fX1GTJkCOnp6ezatSvTe4KQnS5dukRoaKg8RU2T0fv37wMZ2dR0Znr06IG5uTlLlixBrVaLzo2Qo7Tz6e3tzb59+zA2NqZ69eocPnyY2bNnc+rUKSBzQWn9+vVs2LCB6Ojor35TnGeFrKSd0YEDB7Jv3z7MzMyoWbMmu3fvZsqUKZw+fRr4uqDk7+8PfP3ASJxnhaykUqnQ1dXl48ePXL16ld27dxMUFER8fDwWFhb88MMPjB07lpcvXzJ+/HhRUBJynHZGL126xJYtW7h79y7h4eFyQWnIkCHExcXh5eUlCkqCkEP0c7sB+U1ISAiDBg2ibNmy7N27FwMDAyRJYtq0aQQGBtK2bVtatWpF7dq1AbC2tqZdu3YcOHCANm3aULFixdw9ACHPe/r0KSNHjqR06dJMnz4dZ2dnAMaMGcPRo0epU6cOw4YNw9HRkUKFCmFjY0P16tW5fv06b968oXjx4mIKm5BjNDmbM2cOL1++ZOrUqdSqVQsLCwtWr17N0qVLWbx4MWq1mmbNmskFJZVKxbp162jUqBE2Nja5fBRCXqad0RcvXjB58mTq16+PmZkZVapUYeLEiaxbtw5dXV0aNWokF5RUKhVbtmyhadOmVKlSJZePQsirNMXOly9fMmTIED58+EBqaioAxYsXZ+7cuZQvX56mTZsCMHv2bMaPH8/s2bNxdHTMzaYLeZz2sgiajA4dOpQPHz7IGxWULVuWQYMG0aBBA3r27AnA6tWr6dmzJ5s3b8ba2lpMeROEbCR6eznMzs6OiRMnEhERQZcuXYCMJ4wNGzZk9OjRXLp0iZEjR9KjRw9u3bpFcnIynTp1IiEhQV7kWEzBELKTh4cHPXv25O3bt0yfPl3e/apPnz707duXN2/e0KNHD8aNG8elS5cwNjbG19eXpKQk9u3bB4iRHULOCgsL4/LlyzRp0oQ6depgYWHB9evXCQgIwNPTE4VCwcKFCzlz5gyQMUJpyJAhbN68mUqVKuVy64X8IDw8nHv37tGwYUPq1KmDmZkZQUFB+Pv7U69ePUJDQ1m8eLGcUU1BadOmTaKQJGSpXbt28eHDB/lvXV1d3r9/T//+/XFwcGDGjBmcO3eOYcOGoVKp6NevH5cvX8bU1JTGjRszbtw4Xr16xZAhQ3j//n0uHomQV/32229A5mUR3r9/T79+/bC3t2fatGkcOXKEYcOGERUVhZ+fH8ePH0dfX5+ePXvi7e1NXFwcbdq0ISYmRhSSBCE7SUKOCAsLk5KSkiRJkqTExERp27Ztkqenp/Tzzz9n+tynT5+kNWvWSO3bt5fKlSsnde/eXQoKCpL8/PykmjVrShEREbnRfCEfeP/+faa/V61aJdWvX1/q16+fFBISIkmSJKWlpUmJiYnS0qVLpQ4dOkju7u7SwIEDpa1bt0q//PKL1KRJE+nRo0e50XwhD1Or1X/5fkJCgjR//nzpyZMnkiRJ0osXL6SKFStKfn5+kkqlko4cOSK5u7tLLVu2lA4dOvTV91UqVba0W8g//lNGIyIipLlz58rn0mfPnkkVK1aUfH19JYVCIV28eFEqW7as1KNHD+n48eNffV9kVMgKXl5eUvXq1aWXL19men337t1SpUqVpHPnzsmvpaenS1evXpXatWsnVa9eXb7/TEhIkHbs2CE1bNhQ3JMKWa5v375SmTJl5Ou55ty6c+dOqUqVKtL58+czff7333+XWrduLdWqVUu6efOmJEkZ2V21apXUqFEj6c2bNzl7AIKQz4jd3HLAuXPn8PX1ZebMmTRs2BATExOSkpI4ePAgCxYswM3NjR07dsifl/7/sM7Nmzdz7tw5goKCsLCwIC4uDh8fH7y9vQGxZoKQdS5dukT//v0JCAigfv368usBAQHs3LmTkiVLMnHiRFxcXOT3Pn36xJUrV9i0aRNRUVFER0djYGDAlClT6NixoxhWLGQJzZRJhUJBYmIit27dIiUlheLFi2Nra4u9vT0AycnJmJqaEhcXx9ChQwGYPn06Li4uqFQq2rRpQ1paGgqFgt9++y1TlgXh79DOaFxcHDdv3kSSJGxtbXFzc6NQoUIAxMbGUqhQIeLi4hgyZAgGBgb8+uuvODs78+nTJ7p06UJYWBi2trZs27aNokWL5u6BCXnKjh07WLJkCdOnT6dWrVqYmJjI782ePZtt27Zx9+5d9PT0UCgUGBoaIkkSZ86cYdSoUTRt2pRZs2ahp6dHSkoK6enpFChQIBePSMhr9u7dy5w5c5g2bRoNGjTAyMhIfm/BggVs2rSJ27dvY2hoKGcU4OjRo4wfP56ff/6ZCRMmoKOjg0qlIiEhQT7/CoKQPcRclBzw3XffUbJkSebMmcP58+dJSUnBzMyMNm3aMHLkSF68eCFPeQNQKpUA9OzZkyVLlrBu3To8PDywsrLi+PHj8q4uog4oZBUrKyuqVavGqFGjuHDhgvy6t7c3P//8My9fvsTf31+e8qb5zo8//sjKlSuZO3cu9erVQ61WExAQIIYVC1lCs+BmbGwsc+bMoUOHDgwfPpyxY8fSqVMn+vfvLy9cbGpqCkBSUhJhYWHUqlVLLhg9fvwYSZL4+eefGTNmjCgkCVlGO6Nz586la9eu+Pn5ydPVhw0bxt69ewHkTk1aWhrh4eF4enrKa9JFRkbi6OjImjVrGDZsmCgkCVkuNTUVlUpFoUKFMDExISQkhODgYABcXV1RKpXyBjGGhobyveYPP/xA+fLlefbsmbyYsYmJiSgkCVkuOjoaSZJwdnbGyMiIsLAwzp49C4ClpSVKpZJLly6hVqvljAK0bNmSmjVrcvHiRVQqlfwwUxSSBCH7iWJSDrCysmLdunU4OjoyY8aMbxaUnj9/LheUNBV3gIIFC1K7dm2WLl3KpEmTePv2LRs2bADEyCQh65QtW5YJEyZQsWJFfH19/7SgNGPGDLmgpFarkSQJe3t7atasyerVq5kwYQKpqakcP34cQBQ8hf+Z5mYwOjqaHj16cPv2bWrXrs2uXbtYvXo1/fr1IzQ0lGHDhrFlyxb5eykpKQByTqOjozl79iz6+vp06tSJli1bAiKbwt/3ZUavX79O9erV2bVrFwsXLsTb25s7d+4wdepUli1bJn8vOjqa2NhYkpOTUSgUfPz4kVOnTvH+/XsqVKhAx44dAbE+opC17OzsiI+P58qVK1y8eJF27dqxY8cOFAoFbm5uGBkZsXPnTp4/fw5k3kHQ2toatVotdsYSspWnpycJCQmcPXuWu3fv0q5dO27cuIEkSTRp0gRzc3P2798v78KqnVEdHR309fXR09MTDzMFISflzuy6/OnTp09S586dpZo1a0rHjh2TkpOTJUnKvIZS586d5c8rlUpJkv6YL5yYmCj9/PPPUr9+/SSFQpHzByDkSdprfTx58kTq27evVLFixa/mpWuvofT69WtJkv5Yx0N7PY+ff/5Z6tKlSw60XMir0tPTJUmSpKioKKlOnTpSp06dpEuXLsmva5w+fVpq27at5O7uLgUGBsrfHT16tFStWjWpXbt2UpcuXaQyZcpIa9euzfHjEPIu7YzWrVtX6tSpk3Tx4sWvPhccHCzVq1dPcnd3l1atWiW/PmXKFMnd3V3q1q2b1LlzZ6ls2bLShg0bcqz9Qv4UEBAgubu7S+XLl5e6d+8uhYaGyu9t3rxZcnd3l/z8/KR79+7Jrz98+FBq3ry5NGLECHHvKWQbtVotJScnS+vWrZPc3d2lChUqSD179pRevHgh36du27ZNKlu2rDRq1Cjp1atX8ncfPXoktW7dWl6D7j+tYScIQtYRayblsJiYGIYMGUJYWBiTJk2ifv36X62hVKpUKQIDAwFIT09HX19f/v7cuXM5cuQIu3fvxs7OLrcOQ8jDnj59yvz587l9+zaLFy+mXr168nvaayhNnjwZZ2dneb0QjQULFnD06FECAwNFRoX/2cePH+ncuTNWVlZMnz4dNzc39PT05NEamsxduXKFWbNm8fLlS1avXk29evVQKpUsW7aMe/fuoa+vT/PmzenQoQPwx5p0gvB3ffr0iXbt2uHg4MDEiRMpX7488Md1W3NufPToEQMGDCAtLQ1/f395i/WlS5dy/vx5ChYsSMuWLeURSSKjQlbTZDEkJISWLVuio6ND69at8fX1xcHBQf5cQEAAixcvpmjRojRp0gSVSkVwcDCvX78mMDAQV1fXXDwKIT+4fv06ffv2JT09nbZt2zJ16lR5fa+YmBj27NnDihUrcHR0pHr16hgZGXH9+nUiIiJERgUhF4hiUg7SXMz/U0FpyZIlODs7s3v37kzfj4iIYPDgwRgYGLBhwwYsLCxy6UiEvEh7wez/VFDas2cPRYsWZcqUKRQvXlx+7+PHjwwcOJD09HS2b9+Oubl5jh+H8O+nVqvx8fHh9OnTjBgxgl69emFkZJQpo9od7sOHDzN69GgaNWrEnDlzMDc3R5IkJEmSpxRrfle78CkI/6v09HR++eUX9uzZw6RJk+jevTvwdSFIk7mgoCD69u3Ljz/+yOzZs+X309LS0NHRkReSFRkVskt6ejoBAQGEhoaip6fHoUOH8PLyonv37pnW6Dp69Chbt27l4cOHWFhY4OrqyqRJk3Bzc8vF1gt5nebcp1mf09ramv3799O7d2+GDBki308mJiZy+/ZtFixYwIcPHzAyMqJEiRJMnDhRZFQQcoH+f/6I8L/41k5WmhtEKysrVqxYwZAhQ5gxYwYA9evXx8zMjLZt26JWq5kxYwbHjx+nefPmmX5ToVAwc+ZMUUgS/rYvM6r9bw8PD0aOHMmCBQvw9fXNVFDy9vYmPT2djRs3EhISkqmY9P79e8zMzBg3bpwoJAn/M11dXfz8/AgLC2P79u0ULVqURo0aYWRkJHfWNZsQaJ6wnzlzhqtXr5Kamoq5ubn8Gc3C3JIkiU66kGX09PRo0aIFb968YcWKFbi6ulKjRo2vRhTp6uqiUqmoXr06jRs35siRIwwfPhw7Ozv09PQy7VYkMipkJ319fbp27Qpk3IdaW1uzceNG1Go1Xl5eODk5ARmLGdevX5+kpCQMDAwwMjKSz6OCkF00577Ro0eTmJiIUqnE2tqadevWIUkSw4YNw8zMDHNzc+rVq0e1atWIiYlBX18fc3Nz+aGRIAg5S4xMygbanfQNGzbw4sUL0tLSaNq0KdWqVcPS0hL48ylviYmJvH37Fnd3969+OzU1FWNj4xw9HiHv0c7ounXrCAkJ4fPnz3Tr1o1y5crJGX3y5AkLFiz45gil+/fvU6FChUy/q1AoUCgUopAkZImwsDC8vb1JTExkzJgxNGnSRN6uWtNp12R54cKFrF+/nsOHD1OiRIlcbrmQH0iSxJ07d5g9ezZv3rxh/vz51KlT508/v3jxYgICAjh79mymqUWCkBskSWLOnDls2rSJHj160KtXLxwdHQExQk7IHV+O7IyMjGTz5s1s2LCBXr16MXz4cExNTcVUYEH4BxFXiiymVqvlTrq3tzcrVqwgODiYu3fv8ssvvzB79myioqKAP0YoOTs7M2vWLM6dO0dycjLm5uZyIenL3VxEIUn4u77M6Nq1awkODiYiIoL+/fsTEBBASEgIAKVLl2bkyJFUrlyZkSNHcv78efl3NIUk7YwaGhqKQpKQZZydnQkICMDc3Jx58+Zx6tQpFAqFPCoJ/hhRpym0i62AhZyio6NDpUqVGDt2LC4uLowePZpLly796ec1Uy41638IQm7S0dFh3LhxeHl5sWXLFjZt2sS7d+8ARCFJyBVfFojs7e3x8vKiT58+bNq0iaVLl5KSkiIKSYLwDyKuFllMcwGePHkyT58+5ZdffmHHjh2cPXuWqlWrcurUKWbMmMGHDx+APwpKdnZ2jBkzho8fP37z9wQhq2gyNWXKFJ4+fcqECRPYunUrR44coU2bNuzevZstW7bw6tUr4I+CUrly5fD29ubt27ff/D1ByA6agpKZmdmfFpSePn1KUFAQLVq0wMrKCjHgVsgJmqfjnp6ejB07lmLFiv1pQenZs2dcvXqVli1bYmlp+dWDIkHIKv/XbI0fP55evXqxfft2Vq5cyfv377OpZYLwf2dnZycXlLZu3cqsWbNISUnJ7WYJgvD/iV5gNggODiYoKIg+ffrQoEEDLC0tuXv3LhcvXsTBwYHr16/j7+8vF46srKwICAhg3rx5FCtWLJdbL+QHd+7c4datW3Tt2pWGDRtSuHBhrl+/zunTp7G3t2fHjh3ymkjwR0Fp+fLl8jB4Qcgpzs7OrF69GnNzc+bOncvJkyflglJ0dDRHjx4lKSmJxo0bA18/3RSE7KC9bpdmhJKmoHTx4kX5czExMRw5coTExER++OEHQBThheyhUqnQ1dXl48eP3Lhxg8jIyP/qe+PGjeOnn37i5MmTGBgYZHMrhfzsr4qdf/YgSFNQ6tSpEydPniQpKSm7micIwv+RuJvJAl+e/CwtLSlWrBi1atXC3NycZ8+e0bt3b5o2bcq2bduoW7cup06dwt/fX77QW1tby4ttiyeWQlb71gW6dOnSNG3alAIFCvDkyRMGDhxIw4YNOXjwIN27d2f//v0EBgby4sULAMqXLy931kVGhaz0ZZ6+ldeiRYsSEBBAgQIFmDdvHmfOnCEqKooDBw6wceNGevbsmWlNL0HISl9mVPP3nxWUxowZQ1BQELGxsezZs4eNGzfi5eX1l2sqCcLfoVk/LiQkhH79+rFw4UJu3rz5X39/2rRpHD9+HBsbm2xspZCfaYqd0dHRXLhwgV27dnHr1i3i4+OBjPPpn91f2tnZMWjQII4dOyYyKgj/IGIB7r9Je5HC9PR09PX1USqVJCcnY2FhwcePH+nVqxdFihRhypQpODs78+rVK3r27ImhoSHFihVjxYoVYqcMIdtoZ1SzroxSqSQmJgY7Ozs5o46OjkyePJmiRYty/fp1vL29SUlJoWXLlkydOpWCBQvm8pEIeZGmAyRJEg8ePPhqUfcvhYeHy4tyV6pUiRMnTjB8+HAGDx4MiIVjhaynvWHBpUuXvlkQ0hSUtBfljoiIoHbt2hw5coRhw4YxaNAgQGRUyHqa/L169YquXbtSpkwZfvzxR9q2bZvbTRME4I/z3suXLxk+fDgfP34kISEBgHr16tGpUycaNWoEfL0QtyAI/1z6ud2AfzvtNZIKFSrEsGHDMDQ0lLeoDA0NJTY2lmHDhuHs7AxASEgI+vr6VK1alSpVqohCkpCtNBkdOXIk5cuXp3379hQsWBA7Ozsgo3MeExPD4MGDKVq0KJBRdPL09MTV1RV7e3tRSBKyjaaT3q9fPx4+fMju3bvlc+W3aEYoeXt7c+LECUaOHEn//v0B0UkXsocmo4MHD+bDhw9YWVlRtmzZTJ/5coTSuHHjmDdvHocOHcLX1xdvb29AZFTIHjo6OiQmJjJr1ixcXFzw8/OjXLly8vsKhQKlUomZmZk88lN01oWcpKury/v37+nbty/FihVj0KBB2Nra8ujRI5YsWUJoaCgpKSm0atVKZFMQ/kVEMSkLpKWl8eDBAz5//oy5uTm9e/fG0NAQyOiUx8XFyfN7P378SHBwMJUrV8bf3x99/Yz/CUQVXshOSqWSjx8/smTJEkxNTWnRooW869qHDx/4/PmznL+YmBguXLiArq4uEyZMkH9DZFTISl+O9nj//j3jxo3DysrqP363aNGirFy5kkePHtGiRQtAdNKFrKed0YcPH/L48WNGjhyJi4vLNz//ZUFp+PDhJCcny0/bRUaF7JSWlsbLly9p2rSpXEi6f/8+t2/f5sSJE5ibm9OjRw/q16+fuw0V8g3tkcc6OjqcOHEChULBwIEDqVWrFgDff/89ZcqUwcfHh9WrV+Ps7PwfRygLgvDPIYpJf5NKpcLIyIitW7fi4+PDtm3bAOSCkqOjIy4uLqxbt47g4GBSUlI4deoUY8aMkQtJIJ4QCdnLwMCAtWvXMmbMGGbNmoUkSbRs2RJzc3Nq1qyJg4MDS5Ys4ebNm8THx3Pq1CnGjh2b6TdERoWspOmkr127FgMDA6ytrWnZsiWGhob/VeGyWLFi8oYFopMuZAdNRufMmUPhwoUpVaoUP/zwA8bGxn/6He2CUo0aNeTXRUaF7JaWloa5uTlhYWE8e/aMoKAgAgMDiYmJoUSJErx8+ZJRo0bx22+/fTWyThCy0vXr13FycsLR0THTue/9+/ekp6dTunRp4I81lKpXr868efMYMGAAFy9eFMUkQfgXEXc2/0fp6emZ/tbT00OpVGJubs7SpUspWbIkW7duZf369aSlpeHq6sqkSZMoUqQIFy9e5Pnz54wdO5aePXsCf75zgSD8r77MKGTkzMjIiLlz51KnTh1mz57N0aNHiY2NxcLCgt9++w1zc3OOHz/Ow4cPGTNmDN27d5e/KwjZ4fr16yxYsIDZs2cjSZI8ovP/WrgUnXQhu5w7d46NGzeyaNEi+eHRt86x2r6VX5FRISt967rs4ODADz/8wPXr12nTpg2zZ8+matWqLF68mJ07dzJ16lTS0tLkXVoFITs8f/6cAQMG4Ovry/v379HV1ZXPmaampiQmJhIRESF/XkdHh/T0dOrWrcv333/P8ePHSUxMFPeegvAvIRbg/h9t3bqV77//Hjc3NyBjGpGBgQFJSUkMGzaMx48f07t3b7y8vDA2Nubjx4/o6uqSlpaGg4MDIJ5UCtlr27ZtNGnShMKFCwN/TFNLS0tj9OjRXLp0iXHjxtG0aVMKFSqEQqHg8+fPAPJ6SiKjQnZKTEzkzJkzBAQE8OnTJ1atWkWVKlVyu1mCIFOpVGzatInAwEDi4+MJDAzE1dU10xQ4QcgpKpUKyHiQGRMTQ0REBAkJCVhYWMhT265cucLHjx8pXbo0Tk5O8hqeZ86cYerUqcycOVPsfClkq7lz53Lw4EFKlCjB3LlzKVKkCACvX7+mW7dueHh4sH79euCP/hNAnz59iI2NZd++fbnWdkEQ/m9EL/F/8PvvvzNjxgw2bNjAq1evgIxpRJrFDVeuXIm1tTVr1qxh06ZNpKamUrhwYaytreVCkiRJopMuZJvLly8zffp0Fi1aRExMDPDH9AsjIyNmzpxJuXLlWLp0KadPnyYmJgZDQ0Ps7OzkQpLIqJCVvrXdr7m5OQ0aNGDgwIHo6+szf/58wsPDc6F1gvDtjOrp6eHl5UXXrl1Rq9V4e3sTHR2Nnp6e3LEXhOx26dIlIiMj0dPTQ09Pj5cvX9KjRw/69etH37596dGjB5MmTSI5OZlatWrRtm1b3N3d5ULSvXv32LFjB1ZWVpQpUyaXj0bIqzTnxDFjxtCxY0eeP3/OmDFjePfuHQA2NjZ07tyZK1euMGjQoEyFpAcPHhAVFYWrqysKhUKMTBKEfwkxMum/8K0nkJs2bWL27Nm0bduWAQMGUKJECSBjzrqRkREnT55kwoQJWFtb07x5c3x8fETHXMg22hmVJAmlUsn+/fvx9/enZcuWjBo1Cmtra+CP0UZbtmzB398fCwsLhgwZQpcuXeSLuiBkpfT0dHmNuNevXxMdHY21tTV2dnbysPfTp08za9Ys3N3dmTVrFk5OTrncaiE/0c7oq1ev+PTpE46OjhgZGWFtbU16ejpbtmxh1apV2Nra8ttvv2FtbS1GKAnZ7tGjR/z000+sW7eO2rVr8+bNG7p164arqyvt2rXDxcWFc+fOsXr1ajp37sy4cePkdb1SUlLYs2cPx44d4/Xr12zatAl3d/dcPiIhL1MoFPKU9cWLFxMYGEipUqWYPXs2jo6OREVFsWHDBrZu3UqxYsVo0KABKpWKW7du8ebNG3n0pyAI/w5iAe7/guZGcfLkybRp04YqVarQq1cvAGbPng0gF5SMjIyAjOkbRYoUwcDAAEdHR1FIErKVJqNTpkyhW7duuLu707ZtWyRJYsaMGQCMHj0aKysrOYuWlpbUrl0blUqFjo6OKCQJ2UKlUsmd9NGjRxMUFER0dDQGBgZ4eHjg7+9PqVKlaNq0KQCzZs1i/Pjx8o2nIGQXzdRf7YyOGTOGq1evEh0djbGxMZUrV8bLy4u6devSo0cPJEli9erV9OzZk82bN8uFJu0NNQQhKzk6OmJoaMj9+/epXbs2Bw4cwNzcHF9fXypVqgTAkSNHMDIyokyZMpnuN7dt28by5cupVKkSW7duFZ10IcudOXMGtVpN0aJFKV26tFxIAvD19UWSJHbs2MHYsWOZPXs2Tk5O9O/fnzJlyrB9+3a2bt1KgQIFKF68ONu2bRMZFYR/GTEy6b/05MkT2rVrx5o1a6hbt678umaEUps2bejZsydly5bl48ePrFy5EisrK4YNG5aLrRbyk1u3btG9e3eWL19O48aNgYwnRPv27WPGjBm0bt2aQYMG4ezsTExMDPPnz8fIyIipU6fmcsuFvOTWrVs4ODjIU3o1fHx8uHXrFu3bt6dq1apcuHCBM2fOkJqayrx586hbty4JCQmcOXOGefPm4ezszLx58yhatGguHYmQVwUFBWXaaU1j+PDh3L59mw4dOuDu7s6DBw84cOAASqWSadOm0aJFC3mE0rp16zAzM2Pbtm3yunSCkNUkSSIpKYmuXbtSvHhxlixZQt++fQHkNWfmzp3Lb7/9xi+//ELz5s0xNzcnJSUFExMTAIKDgylevDiWlpa5dhxC3hQUFETv3r0BsLW1pUKFCtSpU4f69etjZWUlP6RcunQpmzdvxsPDQy4oabqfz549w9LSElNTUwoUKJBrxyIIwv9GPEr7L6jVagoWLIihoSFv374F/hgS36tXL3R0dFi4cCFPnjyhSpUqREdHc+7cOSZNmiT/xn+z1bUg/B1FihTB0NBQnpsOYGhoSPv27dHT02PGjBm8ePGCChUqEBcXx8mTJ/n111/lz4qMCn+Xpri+fv16ihQpIufp1q1b8hoJXbp0wdTUlFq1alG/fn2WLFnCmDFjCAwMpHjx4vzwww+o1WomTpzIo0ePRDFJyFJbt25lxowZrFixgkaNGsmv37x5k2vXrtG/f3969OiBsbExLVq0oHLlyixfvpxff/0VS0tLatSoQc+ePVGr1cybN48rV67Qtm3b3DsgIU/Svh6bm5vLI5ISEhIoWLCgvFnG/Pnz+e2335g6dSqtW7eWp7eNGjWKevXq0alTJzw9PXPtOIS8S61WExsbi5ubGy9evJD/e+nSJWbNmkXdunWpVasWzZo1Y/jw4RgZGbFlyxbGjh3L3Llz5ZHHHh4euXwkgiD8HWLu1Td8ue2vrq4ujo6OFCtWjKtXr6JWq9HT05Or6l5eXsycORMrKytOnjzJo0ePGDlyJD///LP8G6KTLmSlb21NbWdnh6OjI48ePQL+WAjR0NCQjh07snbtWhQKBSdPnuTWrVuMHDmSn376Sf6+yKjwd9y5c4fVq1czYMAA3NzcMuXp3bt3JCYmUqdOHUxNTVEoFOjp6VG7dm159Ob06dNRKBSYm5vTrFkzjh49SrNmzXLrcIQ86P79+yxdupQBAwZQoUKFTO+9e/eO+Ph46tati7GxMQqFAoDGjRszaNAgVCoVu3btIikpCT09PXr16sW+fftEIUnIFprzp2ZR+KJFixIbG8vnz5/x8PDgyZMn+Pj4sGnTJqZNm0arVq3kQtLx48cJDQ3FyMhILGIsZBtdXV0aNGiAj48PJUqUkEe8r1y5km7duvH8+XOmTp1K06ZNGT58OC4uLlSoUIF3794xceLETA8+BUH49xIjk75Bs/bB9u3b5SKSi4sLRYoUITY2NtN8dM1OBC1btqRGjRqoVCpSUlJwdnYGxNbqQvbQZHT//v0UKlSISpUqUahQIUqVKkVISEimBRAho7BUrVo1tm3bRkpKCmlpafKID5FRISskJiaiUCgoVaoUtra2QMbwdXd3d3ka0OPHjylVqhSGhoZy7urUqUOtWrUICgoiMTERKysrzMzM5HUTRD6FrPLx40fS09MpX768nMlbt25RpUoVeder+/fvf5XRpk2bcvnyZU6dOiV37vX09ORdsURGhaxy+PBh9u3bx/fff0/FihVxdHSkaNGi1KhRg8KFCxMUFETfvn05duwYJ0+epHv37jRu3BhTU1MgY7Hu3bt3Y2pqSvXq1cVDIiFbGRsbU6dOHQB+/fVXpk6dypw5cxg9ejR9+vTh7du37Nmzhxs3bnD16lW5j/T+/XumT5/O8uXLxQYGgvAvJ4pJf2Lt2rUsWLAAyBjZ4ejoSFpaGp8/f2bnzp1Uq1YNW1tb+UkQgJWVVabfEFurC9lpw4YNzJ07F8goLtnY2KBWqzE0NGTbtm00btwYY2NjChcuLF+sCxQokGlOusiokFUMDAxISkri4cOHVK9eHT8/P+Lj49m0aRO2trZYWVmxd+9ePDw88PDwQFdXV54uXLZsWU6ePElSUtJX51GRTyGrODo6kpyczN27d2ncuDF9+vTB0NAQNzc3PD09sbS05MSJE9SpUwd7e/tMGbWzsyMxMZHExMSv1vUQGRX+LkmSSE1N5fz583z8+JHffvuNxYsXY25ujru7O/b29nz69InXr1+jr6/P9OnTGTduHMePH8fU1JQffviBoKAgLl68yPPnz9m2bRt2dna5fVhCPmBkZETdunWZOnUqM2bMwNfXl8WLF+Pm5oa1tTXlypVDV1dXHjG3a9cuDAwM8PPzE4UkQcgDxALcfyI1NZWoqChiYmJ49uwZDx484NOnT5w7dw4AExMTChYsSOnSpSlZsiQ2NjbyDm+CkBM+ffpEWloa8fHxXLt2jcjISIKDg7l//z6FChUiOTkZa2trypYti42NDWXLlqVNmzaZRiwJQlZatWoVS5YswcHBgZSUFGbPnk3NmjUxMDBg586d8roeffr0oXTp0kDGaJHp06cTFhbGxo0bxSKxQraQJAlJktiwYQMLFizAwcGBhIQEZs2aRe3atTEyMmLfvn1MmTKFli1bMmzYMJycnACIjo7G39+fV69eyRkVIz6E7KAZ5RYWFsbr1695+vQply5dIikpicePH2NiYsKcOXNo0qQJYWFhTJw4kXv37qFQKChQoAAeHh5MmTIFNze33D4UIZ9RKBRcvHgRf39/zM3NWbBgAaVKlfrqc5GRkRgaGn714EgQhH8nUUwiYwrQf1Mdv3DhAmPHjqVv374UKlSIhw8f8uzZMx4/fsyIESPkHQ0EIav9txm9fv06Xl5e+Pj4YGVlxYsXLwgODubt27cMGTKEnj175kBrhfxGe5pPrVq1+Pz5M/Xq1WPs2LG4uLjIn9MUm8qUKUPbtm3laRt79+5lwoQJdOvWLZeOQMgvYmNjadeuHe/fv6dRo0b4+/tTqFAh+b0dO3awYsUKypcvT4MGDXB0dOTy5cscPHhQZFTIdt/aCEOSJFJSUrh48SLLly8nISGBcePG0bx5cwBevHjB58+fcXJy+mr0sSDkpP9UUBIbvQhC3pPvi0nanfQDBw7w5s0bjI2NKV68OE2aNAH+2LktKSmJpk2b0r59e/z8/OTfSExMxNzcPFfaL+R9mvwB7N27l7dv36JUKqlevTqVKlXC1NQUpVKJvr4+sbGx/Pjjj3Ts2JHhw4cDGRf3tLQ0cYMpZLt9+/axYcMGHB0duXDhAr169aJ79+7yCA/NZwICAggLCwMydiH08vKSR3aKm00hO2hytXnzZjZt2kSZMmU4c+YMffr0YfDgwfI1PD4+nsuXLzN37lwiIyMBcHBwoGfPniKjQo77cj2u33//nfnz55OcnMyYMWNo2bIlIDIp/HN8WVBauHChGCknCHlYvi4maV+kvb29uXHjBsbGxqSlpaFWq2nYsKG8bpLmyVDPnj0pXLgwq1atkn9DR0cHHR0dsQinkOW+zGhwcDCGhoYoFAoMDAyoVq0aU6ZMyTQ1qGPHjlhYWLBu3bqvfk/ccArZKSoqisTERJycnFi0aBEbN26kR48eeHl5ZSooffjwgdjYWNLS0ihUqJDYsEDIMWlpaYSHh2NkZMSuXbtYu3YtvXr1YtiwYfIi3AAJCQmEhIQgSRKWlpbyCDuRUSE3aF+7f//9dxYsWEBaWho+Pj78+OOPudw6QchMU1CaPXs2SqWSDRs2yJtqCIKQt+TrBbg1N4RTp07l4cOHTJ06lcaNG6Ojo8OECRM4evQodevWpU2bNujo6GBqakrlypU5deoUcXFxWFhYZLqpFDeYQlbTZGrKlCk8ePCAyZMnU61aNezs7OjTpw/Hjx+nevXqdOrUSV5Mu3z58ly6dAmVSoWOjk6mXIpCkpCdbG1t5Z3cxo4di1qt5rfffgOgV69eODo6yp/7cnFYsRi8kN3UajVGRkaULFkSgG7duqFSqdiwYQMAw4cPx9TUFLVaTYECBahYsWKm74uMCrlFR0dHLig1atQIXV1dJk+ezJo1a2jYsCFmZmbi+i78YxgaGlK3bl0UCgWrVq0Sa3UKQh6WL4pJfzUaIy4ujnv37tG6dWv5gnz37l0uXLhAx44dqVy5cqbPW1tb8/79e1JTU7GwsMiJ5gv5wJcZ1f7748eP3L9/n59++knO6IMHDwgODqZTp07UqVNHHh0HULJkSbZv3050dLTcsa3RbcgAACgQSURBVBeE3DB+/HgAuaDUu3dvHBwcvnk+Fh0hIbt9WQiyt7fHy8sLQC4o+fj4YGJi8s3vi4wKuUm7oNSgQQP8/f0pXry4WGZB+EcyNDSkcePG1KtXL9OoT0EQ8pY8/4hNMw1NoVAQExPz1fvR0dE8ffqUKlWqUKBAAYKCgujVqxcNGzZk6NCh8tSMGzduAFC2bFl+/fVXseWqkGW0M6pZo0O70xIfH09oaCgeHh6YmZlx7do1unfvTqNGjRg6dCgODg4A3LlzB4VCQeHChZk8eTJ2dnai8yNkObVa/X/6/Pjx4/Hy8mL79u2sX7+e8PDwbGqZIPzf2dnZ4eXlRZ8+fdi6dSsLFiwgKSkpt5slCN+kKSgB1KtXT54iLAj/RIaGhqKQJAh5XJ4uJqlUKnR1dYmNjWXGjBl069aNmzdvor1MlLm5Oba2tkRHRxMUFIS3tzeNGzdm7NixcsHozJkzzJw5k9evX1OjRg1+/vln4P/eqRKEL2lndM7/a+/ew2s68/6Pv3fOkjgFOUiIQwmjUm08TdEosjVGTYL2qglFpOrUIookRMc1qho1SCmtp49DU8pjtKGIUrQ8FA1tqENa0lFKGgmRTILsJDu/P/z2HkErSIT4vP6z91pr3+u6vlfs9dn3/b1nziQyMpLNmzeXOcbOzg57e3vMZjPHjh1j+PDhdO/enZiYGOvMo+TkZP7xj39w7tw5unfvbt1xSDUqFclSrwDp6emcP3++XOdNmjSJ8PBwVqxYYQ1MRSrDzf7m3ao1pCVQGjhwIMuXL+fo0aOVNTyRu6YfiURE5H5RbZe5mc1mbG1tyc7OZujQoZjNZlq2bEmzZs3K/Efs4eFBq1atSEhI4NKlS3Tv3p3Y2Fjq168PwNmzZ0lOTqZ27do4OjqqR5JUmGtrNDIykpKSEh5//HH8/f3LHOfr60uXLl144403KCoqok+fPowaNcoaJGVkZPD111/f0B8JVKNSca7d+XLKlCmcOHECo9HI4MGDsbe3v+X5U6ZMoUePHrRv376yhyoPqWt3vjxx4oR1p9WmTZtaa/f3GmhbAiWj0XjD8nYRERERuVG1DZMssz0iIiKoUaMGI0aMoFu3bhgMButDkeWL54QJE5g8eTI//vgjPXr0sE7JPHXqFOvWrWPHjh3ExcXh5eVVxXcl1YmlRiMjI3F0dGTUqFF06dKlzM6Alv4IYWFh/Otf/+LHH38kJCTEWounT58mKSmJ7du3M3nyZOuSN5GKVFpaan0YHz58OGlpaYSGhvLcc8+VK0iysARJ2hFLKlpJSYk1SIqNjWXfvn1kZGTg5ORE9+7dCQ0NJSgoCBsbm9+tP09PTzw9PQHVqIiIiMitGEpvNf/7AWR5AJ8/fz6bNm3ijTfeIDAwEBsbmzK/rl97/Ndff83bb7/Nv//9bwICAvD09OSHH37gxx9/ZNSoUQwbNqzMtUUqwrx589i4cSNTp06lY8eOADetUYB169Yxf/58srOzMRqNODo6kp6eztGjR3nttddUo1Lp5s6dy5o1a5gyZQpBQUFlGr8WFRVZgyXVoFSVMWPGkJKSwgsvvICXlxenT58mMTERHx8fXnvtNf7yl79U9RBFREREqoVqOTPJ8hCTmppK3bp1+a//+i/rL4y2trYUFRWxYcMGjh8/Tp06dWjfvj1du3alefPmJCQkkJaWRmpqKgEBAQwYMIDQ0FBAv1RKxfvhhx9wd3enY8eO1gdwGxsbTCYTGzZs4OTJk9SoUYNu3boRFhZG06ZNSUpKYvfu3RQXF+Pv7094eDhhYWGAalQqj8lkIjU1lUcffZQePXpgMBjIycnh2LFjbN26FbPZzLPPPkvHjh0VJEmluTaovP7v3Y4dO/j2228ZMWIE4eHhODo6AtC5c2eioqJYuHAh7u7uBAYGVsnYRURERKqTahkmWeTm5uLk5GSd+g6wdu1akpKS2Ldvn/U1V1dXJk2axPPPP8+cOXO4dOkSxcXFuLi43LLPgsidKikpoaioiPz8fOsDUlFRERs3bmTdunXs2bPHeuyaNWt49dVX6du3L/7+/pw/fx4HBwccHR1xcHAAVKNSuUpKSjCbzRQUFHDu3Dlyc3OZOXMmR44cwWQyYWtry5o1a1i2bJn6IkmlsPydzMvL48qVK7i7u5f5u3fhwgVyc3Np164djo6O1mbcHTp0ICEhgSFDhrB582YCAwM1e05ERETkLlXLJ0/Lyr2ePXuyf/9+YmNj2bx5M6NGjWLSpEmcOHGC0aNHs2zZMmbOnMmVK1eYO3cuaWlpADg7O1OrVq0yS430kC4VzdbWlscee4x//etfREdHs3PnTsaPH8+kSZP46aefGD16NAsWLOAf//gHBQUFZbZVr1evHjVr1izTr0Y1KhXlZjti1ahRg6CgII4ePUpoaCihoaHk5eURGRnJd999x8KFC3F1dWXXrl3ArXfQErldBoOBy5cvM2TIEF5++WUyMjKwsbGhuLgYuDp7rrS0lOzsbOBqDVqWt3fo0IGwsDA2bdpEZmamgiQRERGRu1QtZyZZviSGhIRw8uRJNm7cyNq1a3F2dqZjx4787W9/w9fX13p8fn4+b775JpmZmbRq1aqqhi0PoZEjR3Ly5Em2bNnC+vXrcXJy4qmnnuLvf/87jRs3th534cIFZsyYweHDh2nUqJH1dT0Qyd26ftmQ2Wy2zubMzMykoKAAJycnGjZsyLBhw3B3d+fUqVM0aNCALl26WJvBu7m5YW9vT+3atQHVplSOGjVq8MQTT5CcnEx0dDTvvPOOtQaNRiOLFi0iMTERo9FYZqMNgDp16lBUVHTTnnQiIiIicnuqZZhk4e3tTVRUFAMGDODYsWO0bt0aX19fnJycKCkpwcbGBoPBgJOTE4C1v4LIvVBSUoKTkxOzZs3i0KFDZGdn06xZMxo3boyTk1OZhyDLw0+9evWqcshSzViCpIsXL1JYWIiHh4d1htukSZP4/vvv+eWXX/Dy8qJbt25MnjyZ3r1733Cds2fPsnHjRkpKShTIS6WxLGmLi4vDxcWFlStXlgmUXFxcCA8PZ/bs2YwaNYqFCxda/4ZmZWWRkZFh/SFJy9xERERE7k61DpPg6q/lbm5u+Pn5WV+79iE9KyuLvXv34uvri4eHR1UNUx5Ctra2mM1mHBwcbugxc22NZmZmcuDAAZo2baowSSqUwWCgoKCAPn368Ne//pXhw4cDV2fMHTx4kNDQUJo3b87Ro0dZvnw5WVlZTJ8+nZo1a1qvkZKSwoYNG0hKSmLMmDF06NChqm5Hqplr+yFZlqyZTCYcHByIiooCsAZK8fHxeHt7ExYWRnZ2NomJifTr14++ffvi5OTEgQMH2Lp1K1OmTKF+/fpVeFciIiIi1UO1CJOubzx8q18cLQ/pZ8+e5bPPPiM5OZnJkyfTtGnTSh+rPJyur1HLv6/vc2Sp3WtrNCkpic2bNxMXF0fz5s3v6bil+nN2dqawsJAzZ84AkJyczMGDB4mNjaVbt264urqydetWVq5ciYuLCyUlJdZzt2/fzujRo2nUqBHR0dG89NJLgJrBy92z1FBOTg4nT57E29sbd3d364YDAFFRUZSWlrJq1SpiYmKIj4/Hx8eHoUOH0qhRIz755BOmTp2KnZ0d7u7uTJw4kf79+wOamSQiIiJytwylD3iX1JKSEmxtbSktLeWHH37A39+/XOetX7+er776it27d/Pyyy8zbNgwQF8wpeJZahTg//7v/wgKCrrlOSaTia+//prk5GS++eYbhg4dqhqVCmcJhl599VUuXLjA6tWrmTdvHmvXruXzzz/H1dWVvXv3MmLECEJCQhg3bhyenp5lrpGcnIyPj4/1b6+CJKkoeXl5dO3alYKCAlq3bs1jjz2G0Wikbdu21t5cAAkJCaxYsQI/Pz9roFRUVERRURH79u2jVq1a1KxZk5YtWwKqUREREZGK8MDPTLI8pA8dOpTDhw/zz3/+s0zj4utdvnyZTz/9lPfee4+mTZsSGxtLnz59AH3BlMphqdFRo0aRmZmJm5sbbdq0+d3jS0tLWbZsGQsWLKBt27Zl+tSoRqUiWWqzc+fOTJ8+nYyMDGtY6erqyv79+xkxYgRGo5Hx48fj7u4OwJIlSwCIjIykZ8+e1utZliKJVIRDhw7h5uZGQUEBxcXFbNq0ic8++4zatWvTq1cv2rVrR0hICFFRUTg7O7N06VJiYmKYOXMmPj4+2Nvb07Vr1zLXVI2KiIiIVIwHNky6frZHRkYGsbGxuLm5/eF5NWrUoGvXrrRo0YKGDRtad8bSQ7pUtGtr9PDhwxw9epTx48fTpEmTPzzPYDAwePBgWrVqRdOmTVWjUiGurcfrX/P29sZsNnP69GmaNWtGbm4uCxYs4H/+53949tlnywRJaWlpfPHFFwQGBlr711hoxpxUpPbt2xMTE8O7775LUVERCxYs4OTJk6SkpJCUlMTSpUvx9fWlU6dO9O7dmxMnTnDgwAHi4uKIj4/Hy8vrhpmcqlERERGRivHAL3P78MMPsbe3Z9u2bSxevBgHB4fbXgakZUNSmWbOnEmDBg3Yu3cv8+bNs+4e+Htu9tCvGpWKcP78eRYtWkRAQABNmjTBx8cHFxcXrly5QlhYGEajkYkTJ9KnTx+OHTtGYGAgM2bMwNvbG7i6YcFHH33Exo0bmTZtWrmWbIrcjcLCQnbu3Mm0adPw9PRkxowZtGjRgvT0dE6dOsWqVas4ePAgRUVF1KpVi5ycHK5cuUKbNm34+OOPcXZ2rupbEBEREamWHtiZSQD79u1j9uzZwNVfMC2/kN/uQ7ce0qWyfPXVVyxduhR7e3uefPJJHB0dy+zUdjPXB0mgGpW7ZzabSUhIYN26daxcuZLS0lJ8fX1p2bIlfn5+FBcXc/bsWQBmzJhBdHQ06enpfPnllzz33HOkp6ezbds2VqxYQXR0tIIkuSccHR155plnmDp1KtOnTycqKoqEhARatGhB8+bN6dSpEyaTibVr13L8+HHWr18PQK9evRQkiYiIiFSiB3pmUn5+Plu3buWDDz7g/PnzvP/++zdssS5SlUpKSli2bBkrV64kLy+PlStX0rx585vOPhKpbAUFBbi4uJCSksLJkyc5cOAAqampFBcX8+uvv2JjY8PcuXMJCQnh+PHjxMbGcuTIEeBqoOnl5cWgQYOIiIgANGNO7h2TycTOnTt56623cHV1Zfbs2daG2tf6+eefycnJISAgAFCNioiIiFSWByZM+r1+Mbm5uWzfvp133nkHX19fZs2aZe0xI3Iv/V6NFhcXk5iYyMKFC6lbty4rV66kfv36CpTknrvZg7XJZOLs2bOkpqby/vvvYzKZiImJoUePHgDs2LGDrKwsPDw8cHd3x8/PD1APL7n3bhUoXV/fqlERERGRyvNAhEnXLgs6efIk2dnZ1KtXDw8PD5ydncnPz+fLL7/k7bffxs/Pj7fffhsfH58qHrU8TK6t0Z9//pnz58/j7e2No6Mj9erVo7i4mI8//pj3338fd3d3PvroI+rVq6dASarU9Q/b27dvZ9asWRQUFBAdHU2vXr1uep5me0hVuT5QmjNnDi1atKjqYYmIiIg8dO77MOnah+2JEyeyZ88esrOzsbe3p1WrVrz11lu0bNmSS5cusXnzZmugFB8fb20aK1IZLA/U19ZodHQ033zzDdnZ2Tg5OREQEMDgwYPp3LmzdYbSokWLqF+/PomJidag6Y96KIlUtmvDoW3btjF79myuXLnChAkT6NmzZxWPTqQsS6AUHx+PnZ0dCQkJtGrVqqqHJSIiIvJQue/mf+/fv9/aBBb+04x47NixfPPNN/Tp04f//u//5sUXX+TcuXMMHDiQnTt34uzsjNFoZNKkSaSnpzN+/HhOnz5dVbch1diePXuA/zTFttTomDFj2L17N88//zxz5swhPDyco0eP8vrrr5OcnIydnR2DBg1ixIgRXLx4kfDwcLKyshQkSZUzGAxYflcIDg5mwoQJ2NraEhcXxy+//MJ9/puDPGQcHBzo3Lkz0dHRZGVl8dNPP1X1kEREREQeOvfVU+yyZcuIj49n8eLFeHl5WR/W9+/fz+7duxk5ciTh4eE4OzvTqVMnunTpwrvvvkt0dDQrV66kadOmdO/eHbPZTFxcHEeOHFH/JKlQy5cvZ/r06SxYsIDg4GDr6ykpKezdu5dXXnmFgQMH4uTkRM+ePQkICOC9997j73//O3Xr1qVDhw4MGjQIs9nMrFmz2L17N7179666GxL5/yyBksFgoFu3bphMJgoLC/H19a3qoYncwMHBgS5durB27Vr9Py8iIiJSBe6bMOn7779n0aJFDBs2jBYtWpTpx3H27Fny8/MJCgrC2dkZk8mEg4MDTz/9NGazmZiYGN58800++OADXF1d6dGjB+3ataN58+ZVeEdS3Rw6dIh58+YxbNgw/P39y7x39uxZ8vLy6Ny5M05OTtYaNRqNlJSUEBcXx+rVq/H398fFxYWIiAg6dOjAn/70pyq6G5EbXRsoWRpwgxoZy/3JwcHBGiSpRkVERETurfvmm1d+fj4mk4mWLVvi7u4OwI8//ghAgwYNADh69Chw9Quk2WzGYDAQFBREp06dSEtLIz8/HwAXFxdrkGQ2m+/1rUg1lZWVRXFxMW3btrXW5P79+4GrNQdXA6fS0lJrjQKEhITw5z//mW+++cb6mq2trTVIUo3K/eRmjbX1kC73O9WoiIiIyL1133z7sre3p6CggMOHD5Odnc2gQYOIiYnh4sWLuLu74+bmxqeffkpaWhpw9YtjcXExNjY2tGnThry8PAoKCm64rr5gSkXx9vbm0qVLpKamUlpaypAhQ/jwww/Jzc3liSeeoG7dunzxxRdkZmYC/6lRAA8PD/Lz862B57VUoyIiIiIiIvIguW+eYp966inGjh3LsmXLePHFFzl+/Djjxo2zzjIaO3YsKSkpLF68mGPHjgFgZ2dHVlYWqampPPLII7i6ulbxXUh1VVpaSsuWLZkwYQJLlizBaDRy5MgRXnzxRZycnHBzc2PixIns27ePuXPn8uuvvwJXazQ7O5v09HQeeeQRHB0d1cxYREREREREHmj3Rc8kS6+DkSNHsnz5cn777TeeeeYZfH19sbe3B6Bfv35cuHCBd999l/T0dHr37k2DBg3Ys2cP27ZtY/LkydStW7eK70SqK4PBgMFg4IUXXmDFihWcOXOG4OBgAgICcHR0BKBbt26cO3eOBQsWcPr0abp27Yq3tze7du1iy5YtTJ48GTc3tyq+ExEREREREZG7Yyi9j6ZJfPbZZyxZsgRvb2927NhBREQEL730Ej4+PmWO+eCDDzh16hQAXl5eDB48mIiICABr81iRimSpq8TERJYtW8af/vQntm7dSmRkJKNGjbLOisvLy2PXrl288847/PbbbwA0bNiQQYMGqUZFRERERESkWrivwqRz586Rn5+Pj48Pc+fOZenSpQwcOJDBgweXCZQyMzO5ePEihYWF1KlTh8aNGwPazUUqX2FhIadPn8bR0ZHVq1fz4YcfEhERwejRo61NuAH+/e9/k56eTmlpKXXr1qVJkyaAalREREREREQefPfFMjcLd3d3605uMTExmM1mPvroIwAiIiLw9va2Hufh4VHm3NLSUj2kS6Uym804OjryyCOPADBgwABKSkpYsmQJAGPGjMHZ2Rmz2UzNmjVp165dmfNVoyIiIiIiIlId3Fdh0vUmTZoEYA2UhgwZQsOGDW+6REjLhqSyXR8EeXp6MnjwYABroDR27Fhq1Khx0/NVoyIiIiIiIlId3PMw6XaX+VgCpeXLl2M2m4mIiKBRo0aVNTyR2+Lh4WENlBITEykuLrbuQigiIiIiIiJSHd3TNTclJSXWICk9PZ3z58+X67xJkyYRHh7OihUrrE2NRSqD2Wy+4bVbtRWzBEoDBw5k+fLlHD16tLKGJyIiIiIiIlLl7lkD7pKSEmxtbQGYMmUKJ06cwGg0MnjwYOzt7ct1jf3799O+ffvKHKY8xIqLi7GzuzpZ78SJE+Tn5+Pq6krTpk2ttftHM+t+++03zpw5Q0BAwD0bs4iIiIiIiMi9dk/CpGu3Qh8+fDhpaWmEhobSv39/vLy8bvt62hFLKtq1YWdsbCz79u0jIyMDJycnunfvTmhoKEFBQUD56k81KiIiIiIiItXVPemZZAmS5s6dy+HDh5kyZQpBQUG4urpajykqKrLOULo2fLoZPaRLRbMESWPGjCElJYUXXngBLy8vTp8+TWJiIocOHeK1117jL3/5S7nqTzUqIiIiIiIi1dU9a8BtMplITU3l0UcfpUePHhgMBnJycjh27Bhbt27FbDbz7LPP0rFjR+16JZXm2qDy+tlDO3bs4Ntvv2XEiBGEh4fj6OgIQOfOnYmKimLhwoW4u7sTGBhYJWMXERERERERuR/cszCppKQEs9lMQUEB586dIzc3l5kzZ3LkyBFMJhO2trasWbOGZcuWqS+SVApLkJSXl8eVK1dwd3cvEyhduHCB3Nxc2rVrh6Ojo7UZd4cOHUhISGDIkCFs3ryZwMDAW86eExEREREREamuKmUtzs12xKpRowZBQUEcPXqU0NBQQkNDycvLIzIyku+++46FCxfi6urKrl27gFvvoCVyuwwGA5cvX2bIkCG8/PLLZGRkYGNjQ3FxMXB19lxpaSnZ2dnA1Rq0sbGhpKSEDh06EBYWxqZNm8jMzFSQJCIiIiIiIg+tu56ZdP2yIbPZbN0RKzMzk4KCApycnGjYsCHDhg3D3d2dU6dO0aBBA7p06WJtwO3m5oa9vT21a9cG0MO6VIoaNWrwxBNPkJycTHR0NO+88461Bo1GI4sWLSIxMRGj0YitrW2ZHd7q1KlDUVGRtb+SiIiIiIiIyMPorsIkS5B08eJFCgsL8fDwsC4ZmjRpEt9//z2//PILXl5edOvWjcmTJ9O7d+8brnP27Fk2btxISUkJrVq1upshifwuy5K2uLg4XFxcWLlyZZlAycXFhfDwcGbPns2oUaNYuHChNUjKysoiIyMDX19f4NZN4kVERERERESqq7sKkwwGAwUFBfTp04e//vWvDB8+HICRI0dy8OBBQkNDad68OUePHmX58uVkZWUxffp0atasab1GSkoKGzZsICkpiTFjxtChQ4e7uyOR/+/afkiWJWsmkwkHBweioqIArIFSfHw83t7ehIWFkZ2dTWJiIv369aNv3744OTlx4MABtm7dypQpU6hfv34V3pWIiIiIiIhI1brrZW7Ozs4UFhZy5swZAJKTkzl48CCxsbF069YNV1dXtm7dysqVK3FxcaGkpMR67vbt2xk9ejSNGjUiOjqal156Cbhxly2R22WpoZycHE6ePIm3tzfu7u44ODhYj4mKiqK0tJRVq1YRExNDfHw8Pj4+DB06lEaNGvHJJ58wdepU7OzscHd3Z+LEifTv3x/QzCQRERERERF5eBlK76LTtSUYevXVV7lw4QKrV69m3rx5rF27ls8//xxXV1f27t3LiBEjCAkJYdy4cXh6epa5RnJyMj4+Pvj7+wMKkqTi5OXl0bVrVwoKCmjdujWPPfYYRqORtm3bWntzASQkJLBixQr8/PysgVJRURFFRUXs27ePWrVqUbNmTVq2bAmoRkVEREREROThdlczkyyNiDt37sz06dPJyMiwzthwdXVl//79jBgxAqPRyPjx43F3dwdgyZIlAERGRtKzZ0/r9SxLkUQqwqFDh3Bzc6OgoIDi4mI2bdrEZ599Ru3atenVqxft2rUjJCSEqKgonJ2dWbp0KTExMcycORMfHx/s7e3p2rVrmWuqRkVERERERORhV+6n4muXp13/mre3N2azmdOnT9OsWTNyc3NZsGABr7zyCs8++ywTJ060BklpaWl88cUX5OTkYDKZylxPy4akIrVv356YmBhatGhBUVERCxYs4G9/+xsdO3YkKSmJsWPHEhISwrRp03jqqacICgrit99+Iy4ujoyMDOBqeHQt1aiIiIiIiIg87G5rmdv58+dZtGgRAQEBNGnSBB8fH1xcXLhy5QphYWEYjUYmTpxInz59OHbsGIGBgcyYMQNvb2/g6o5YH330ERs3bmTatGkEBQVV2o2JABQWFrJz506mTZuGp6cnM2bMoEWLFqSnp3Pq1ClWrVrFwYMHKSoqolatWuTk5HDlyhXatGnDxx9/jLOzc1XfgoiIiIiIiMh9pdxhktlsZurUqaxbt47S0lJKS0vx9fWlZcuW+Pn58c9//hN/f3/mzp3LsWPHiI6OJicnh6FDh/Lcc8+Rnp7Otm3bWLFiBdHR0URERFTyrYlcZTKZ2LlzJ9OnT8fFxYWEhARatGhhfc9kMrF27VqOHz/O+vXruXTpEjExMQwZMqSKRy4iIiIiIiJy/7mtmUkFBQW4uLiQkpLCyZMnOXDgAKmpqRQXF/Prr79iY2PD3LlzCQkJ4fjx48TGxnLkyJGrH2Qw4OXlxaBBg6xBknbEknvFEii99dZbuLq6Mnv2bGtD7Wv9/PPP5OTkEBAQAKhGRURERERERK53W2HSzR6sTSYTZ8+eJTU1lffffx+TyURMTAw9evQAYMeOHWRlZeHh4YG7uzt+fn6AdsSSe+9WgdL19a0aFREREREREbnRbYVJ17v+YXv79u3MmjWLgoICoqOj6dWr103P02wPqSrXB0pz5syxLnkTERERERERkVu7qzDJ4tpwaNu2bcyePZsrV64wYcIEevbsedeDFKlIlkApPj4eOzs7EhISaNWqVVUPS0REREREROSBUCFreAwGg3UL9eDgYCZMmICtrS1xcXH88ssvN2yvLlKVHBwc6Ny5M9HR0WRlZfHTTz9V9ZBEREREREREHhgVMjPJ4toZSl988QWFhYWEhYVV1OVFKpTJZCIzM5NGjRpV9VBEREREREREHhgVGibBzfshqZGx3O9UoyIiIiIiIiLlU+FhkoiIiIiIiIiIVF+aiiEiIiIiIiIiIuWmMElERERERERERMpNYZKIiIiIiIiIiJSbwiQRERERERERESk3hUkiIiIiIiIiIlJuCpNERERERERERKTcFCaJiIiIiIiIiEi5KUwSEREREREREZFyU5gkIiIiIiIiIiLlpjBJRERERERERETKTWGSiIiIiIiIiIiUm8IkEREREREREREpN4VJIiIiIiIiIiJSbgqTRERERERERESk3BQmiYiIiIiIiIhIuSlMEhERERERERGRclOYJCIiIiIiIiIi5aYwSUREREREREREyk1hkoiIiIiIiIiIlJvCJBERERERERERKTeFSSIiIiIiIiIiUm4Kk0REREREREREpNwUJomIiIiIiIiISLkpTBIRERERERERkXJTmCQiIiIiIiIiIuWmMElERETkPrdv3z78/PyYP39+mdcHDhyIn5/fHV93/vz5+Pn5sW/fvrsdooiIiDxE7Kp6ACIiIiLVxa+//kpwcHCZ1+zt7alXrx7t27fnlVdeoVWrVlU0OhEREZGKoTBJREREpII1btyY0NBQAC5dukRqaiobNmxgy5YtLFu2jICAgAr5nJkzZ3L58uU7Pn/AgAH07NmThg0bVsh4RERE5OGgMElERESkgjVu3JjRo0eXeW3u3Ll88MEHJCQk8PHHH1fI59xtCOTm5oabm1uFjEVEREQeHuqZJCIiInIPDBw4EIAffvgBgOLiYpYuXUpoaCj+/v4EBAQwcOBAtm/fflvX/L2eSVu3biUyMpLAwEDatm1Lt27dmDhxIj/99JP1mD/qmZSWlsa4ceN4+umnefTRR+natStvvvkmOTk5Nxy7d+9ehg4daj22Y8eO9O/fn//93/8t972IiIjIg0Mzk0RERETuIYPBQGlpKWPGjGHbtm00adKEAQMGcOnSJTZt2sTIkSOZNGkSERERd/wZ8fHxLF26lDp16hAcHEy9evXIyMhgz549tGnThpYtW/7h+du2bSMqKgobGxuCg4Px9PQkPT2d5cuXs2vXLlavXk3t2rUB+PrrrxkxYgS1atUiODiYBg0acOHCBdLS0li3bh39+vW74/sQERGR+5PCJBEREZF74JNPPgGgbdu2rFu3jm3btvHkk0+yePFiHBwcABg+fDh9+/Zl1qxZBAcH06hRo9v+nK+++oqlS5fSsmVLEhMTqVu3rvW94uJiLl68+Ifn5+TkEB0dTd26dVm5ciXe3t7W9zZu3Mjrr7/OvHnzeOONNwD49NNPKS0tJTEx8Ybm4jebxSQiIiIPPi1zExEREalgp06dYv78+cyfP5+ZM2cyYMAAFixYgKOjI+PGjSMpKQmAiRMnWoMkuNoDKSIiguLiYj7//PM7+mxLaBUXF1cmSAKws7Ojfv36f3j+unXryM/P5/XXXy8TJAE899xztGnTho0bN95wnqOj4w2vXf/5IiIiUj1oZpKIiIhIBTt16hTvvfceAPb29tSrV49evXoxbNgw/Pz8OHbsGDVq1MDf3/+GcwMDA4GrPYvuxKFDh3BwcODJJ5+8o/NTU1Ot1zl9+vQN7xcWFpKTk8OFCxdwc3OjZ8+ebNmyhX79+tGrVy86dOhAQECAGnuLiIhUYwqTRERERCrY008/zeLFi3/3/fz8fDw9PW/6XoMGDazH3In8/Hw8PDywsbmzCei5ubkArFix4g+Pu3z5MgB//vOfsbe3Z9myZaxatYoVK1ZgMBgIDAwkNjaW1q1b39E4RERE5P6lMElERETkHnN1deXChQs3fS87O9t6zJ2oWbMmWVlZmM3mOwqULJ+7fv36WzbqtjAajRiNRvLz8/nuu+/48ssvWbNmDUOHDmXTpk3UqlXrtschIiIi9y/1TBIRERG5x1q3bs3ly5c5dOjQDe99++23ADc0sy4vf39/TCaT9Tp3cj78Z7nb7XB1daVz5868+eab9OnTh+zsbA4ePHhH4xAREZH7l8IkERERkXusT58+AMyePZuioiLr6xkZGSxduhQ7OztCQ0Pv6NoDBgwA4K233rph57bi4mLrzKff8/zzz+Pi4sLcuXM5fvz4De9fvny5TNCUkpJCSUnJDcdZZl7drDG3iIiIPNi0zE1ERETkHgsLC2PLli1s27aN0NBQunTpwuXLl9m0aRMXL14kNjaWRo0a3dG1n3nmGSIjI1myZAkhISEYjUbq1atHZmYme/bsITIykoiIiN89383NjTlz5jB27FjCwsIICgqiWbNmmEwmzpw5w7fffsvjjz9u7Qk1ffp0zp07R0BAAN7e3hgMBg4cOMChQ4do164dAQEBd3QfIiIicv9SmCQiIiJyjxkMBubNm0diYiJJSUksX74ce3t72rRpQ0REBMHBwXd1/ZiYGB5//HGWL1/O5s2bKSwspEGDBjz11FN06tTplud36dKFpKQkFi9ezJ49e9i9ezfOzs54eHjQt2/fMrOmhg8fzpYtWzhy5Ai7du3Czs4Ob29vJkyYQP/+/bG1tb2rexEREZH7j6G0tLS0qgchIiIiIiIiIiIPBvVMEhERERERERGRclOYJCIiIiIiIiIi5aYwSUREREREREREyk1hkoiIiIiIiIiIlJvCJBERERERERERKTeFSSIiIiIiIiIiUm4Kk0REREREREREpNwUJomIiIiIiIiISLkpTBIRERERERERkXJTmCQiIiIiIiIiIuWmMElERERERERERMpNYZKIiIiIiIiIiJSbwiQRERERERERESm3/wekZGB/7dUx2AAAAABJRU5ErkJggg==",
"text/plain": [
""
- ],
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABJMAAAKsCAYAAABYj/zGAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4U+X7x/FPkm66SylDBFcLyhBkqSAyZAkKylIBRXCLDJUh+nWBAxURxIHKEFSWoIKICCoqG0VALYggQ1bppnvl9we/xKZJ21Nok0rfr+viuuh5znlyn5Mnd07unPPEZLVarQIAAAAAAAAMMHs6AAAAAAAAAPx3UEwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAJSrjh07qmPHjobXnzFjhmJiYrRly5ZzetyYmBgNHjzY7Y+L/7bx48crJiZG//zzj33ZP//8o5iYGI0fP96DkZ29yjq2i8sNp06d0rhx49S+fXs1bNhQMTExSk1N1bJlyxQTE6Nly5Z5IFpnrsZKVTV48GDFxMRUWP9nM4ZdvQcU109Z3y+ksr+3AcD5zsvTAQAAKreMjAx9+OGH+vrrr3Xw4EHl5uYqPDxcF1xwga666ir169dPF154oafDLHexsbH65JNPtH37dp04cUI5OTkKCQlRdHS02rVrp969eys8PNzTYVZaJ0+e1FdffaUffvhBBw4cUHx8vEJCQtS8eXMNHz5cTZs2NdzXjBkz9Oabbzos8/f3V926ddWlSxcNGzZMAQEB5b0Llcpvv/2mjz/+WNu3b1dcXJwKCgpUo0YNNWvWTL1799a1117r6RDP2vjx47VhwwbdeOONqlevnkwmk3x9fd0ex7JlyzRhwgS9+OKLuuWWW9z++GU1fvx4LV++3GFZtWrVdNFFF6lXr16644475O3t7aHo/ntsx3PdunW64IILPB0OAFR6FJMAAMVKS0vT7bffrr1796pevXrq1auXwsLClJSUpF27dmnWrFm68MILz6mYdMcdd6hHjx6qXbt2OUZ+9goKCvTKK69o9uzZslgsatGiha699loFBAQoISFBv/76q15++WXNmDFDq1evVlRUlKdDrpTmz5+v9957TxdeeKGuvfZahYeH69ChQ1q7dq3Wrl2r1157TT169ChTn127dtVll10m6czVLN9++63efPNNfffdd1q4cKF8fHzKJfaoqCitWrVKQUFB5dLfuSgoKNDLL7+suXPnysvLS23atFHHjh3l5eWlI0eOaP369friiy/0yCOP6KGHHvJ0uCWaO3eu07KcnBxt3LhR11xzjV577TWHthtuuEFNmzZVjRo13BRhycaMGaN77rmn0r3m+/btq5o1a8pqter48eP65ptv9OKLL2rz5s165513PB2e26xatUr+/v7lvq6Nq/ELAFUZxSQAQLHmzZunvXv3ql+/fnr++edlMpkc2o8cOaKcnJxzeozw8PBKdYXP66+/rtmzZ+uKK67Q66+/rnr16jmt8/vvv+vVV19VVlaWByL8b2jSpInmz5+vVq1aOSzfvn277rrrLj3zzDPq3LlzmQpAXbt21Y033mj/e+zYserXr59+//13rVy5styuJvH29tYll1xSLn2dq2nTpmnu3Llq2LChpk+f7lS4zcrK0oIFC5ScnOyZAMvAVdE5Pj7efpVVUUFBQZWioGdTo0aNSlPYKqxfv3668sor7X+PGjVKffr00XfffactW7aodevWngvOjcrymj2b1/f5eAUuAJwL5kwCABTr119/lXTm6qGihSRJqlu3brEn5enp6Zo0aZLatm2rRo0aqVevXlq9erXTeiXNjbFnzx6NHj3a3keHDh30/PPPKykpyfA+HD9+XGPGjFGrVq3UrFkzDRo0SNu2bXO57t9//60PPvhA4eHhev/9910WkiTpiiuu0Jw5c1SnTp2zjrnwvDz79+/XfffdpxYtWqhly5YaM2aMEhMTJUk7duzQnXfeqebNm6tly5aaOHGiMjIyHPrasmWLYmJiNGPGDP3yyy8aPHiwmjVrpjZt2uiZZ56xF72+//57DRgwQFdeeaWuueYaTZkyRXl5eQ59nT59WrNmzdKgQYPs+9C2bVuNHTtWhw8fNnbQJXXp0sWpkCRJLVq0UOvWrZWSkqK9e/ca7s+VwMBA9enTR5K0e/du+/KjR4/qiSeeULt27dSoUSNdd911euKJJ3Ts2DFD/ZY0Z1JaWprefPNN9erVS02bNtVVV12l3r17a9q0acrNzdXp06d15ZVXOhS9CisoKFDHjh3VsmXLUouRhw4d0vvvv6/Q0FC9//77Lj/M+vn5afjw4XrkkUdK3a+lS5fqgQceUMeOHdW4cWO1atVKw4YN0+bNm12u//XXX2vQoEG6+uqr1bhxY7Vt21Z33XWXvv76a4f1Nm/erOHDh9vHyzXXXKPbb79dixYtcliv6JwzgwcPVocOHSRJy5cvV0xMjMNxL2nOpCNHjuipp55Sx44d1ahRI1199dUaPHiww7o5OTmaP3++hg0bpvbt29vXe/jhh/XHH3849Dd+/HhNmDBBkjRhwgR7LIXnBSppzqRPP/1U/fr1U7NmzdSsWTP169fPZdyFX6u7d+/W0KFD1axZM1111VV66KGHymU+pqioKN1www2S/n1dFM6zy5YtU58+fdS0aVOHeYPO5nWTnZ2tV199Vddff70aN26s7t27a/78+bJarQ7rnUteWbJkiXr16qXGjRurXbt2euGFF5SWlua0XlnmQSq6bseOHe23DHbq1Mn+3Bddx9WcSVarVUuXLtXAgQPVvHlzNW3aVLfccouWLl3qtG52drZmz56tm266SVdddZWuvPJKdezYUSNHjtSePXsMxQ4AlQVXJgEAihUaGirpTJGlYcOGhrfLzc3VsGHDlJKSoq5duyozM1OrVq3SqFGj9P7776tt27al9rFu3TqNGjVKZrNZnTp1Us2aNbV//34tWLBAP/30kxYvXqyQkJAS+4iLi9OAAQN08uRJtW3bVldccYX279+voUOHuvy2/rPPPlN+fr4GDBhg6GopLy/Ht9Gzifmff/7RwIED1ahRI/Xr10+//fabvvzySx0/flyPPvqohg0bpmuuuUYDBgzQli1btHTpUhUUFOjFF190imfnzp1677331LZtWw0cOFBbtmzRJ598orS0NHXs2FHjx49Xp06ddOWVV+r777/XBx98oICAAD388MP2Pvbv36/p06erdevWuuGGG+Tv768DBw5o5cqVWr9+vZYtW+ayiFYWtuNW9PidC1ux8++//9btt9+uxMREdejQQZdddpn27dunTz/9VN99950+/vhjXXTRRWf1GAkJCRo0aJAOHDighg0b6rbbblNBQYEOHDig999/X3fffbeCg4PVo0cPffrpp/rll1/UvHlzhz42bNigo0eP6o477pCfn1+Jj7ds2TLl5+dr4MCBql69eonrGrnC67nnnlODBg109dVXKzw8XCdPntTatWs1dOhQzZgxQ507d7av+/HHH+vZZ59VZGSkbrjhBoWGhurUqVPavXu3vvnmG3Xt2lXSmQLl/fffr+DgYHXq1EmRkZFKTEzUnj179Pnnn2vAgAHFxtOnTx81aNBAH374oRo0aGB//NJyzfbt23XfffcpPT1dbdu21Y033qiUlBTFxsbqww8/tF+hlpKSohdeeEEtWrRQ+/btFRwcrCNHjujbb7/VDz/8oAULFqhJkyaSpM6dOys1NVXr1q1Tp06dypTvJk2apPnz5ysqKkq33nqrJGnNmjWaMGGC/vjjDz355JNO2+zevVvvv/++WrdurYEDB+qPP/7Q2rVr9eeff2rlypXlNmdU0S8BPvjgA23ZskWdOnXStddeK4vFIunsXzcjR45UbGysunTpYt/vSZMm6ejRow7F2LPNK3PmzNHmzZvVvXt3tW/fXhs3btS8efO0c+dOLViwoNzmhBoyZIiWL1+uPXv2aMiQIQoODpakUnOd1WrVY489ppUrV6p+/frq2bOnfHx8tGHDBk2cOFH79+/XuHHj7OuPGzdOX331lWJiYnTLLbfIx8dHJ06c0JYtW7R79241aNCgXPYHANzCCgBAMdauXWuNjo62NmvWzPrSSy9Zf/zxR2tiYmKJ23To0MEaHR1tfeCBB6zZ2dn25Rs3brRGR0db7777bof1p0+fbo2OjrZu3rzZviwxMdHavHlza7t27az//POPw/orV660RkdHW5977jmH5dHR0dZBgwY5LBs3bpw1Ojra+tZbbzksX7hwoTU6OtrpcQcPHmyNjo62bty4scR9dKWsMR85csQew9y5c+3LCwoKrPfcc481Ojra2qJFC+s333xjb8vJybH26tXLevnll1tPnTplX75582Z7X67Wj4mJsbZu3dq6c+dOe9vp06etV199tbVVq1bWnJwc+/LU1FRrUlKS0/5t2rTJ2qBBA+vEiRPLfGwKO3r0qLVRo0bWa6+91pqXl2doG9sYWblypcPytLQ0a48ePazR0dHW5cuXW63Wf5/DhQsXOqy7YMECa3R0tHXIkCEOy21j5MiRI/Zltudm3LhxDuuOGDHCGh0dbZ06dapTjKdOnbLm5uZarVardefOndbo6Gjr+PHjndaz9REbG1vqfg8aNOisxqOr15TVarUePnzYad2TJ09a27Zta+3SpYvD8j59+livuOIKa3x8vNM2hXPAww8/XOz+FM0VHTp0sHbo0MFhWXHH2mq1Wj/99FNrdHS09dNPP7Uvy87OtrZr187aoEED6/r16522OX78uMO6J06ccFrnzz//tF555ZXWu+66q9THK8zVWNm6das1Ojra2r17d2tqaqp9eXJysrVLly7W6Oho67Zt2+zLC79Wv/zyS4f+H3/8cZfjvDi2eHbs2OGwPC4uznrNNddYo6OjrVu3brVarf+OiSuvvNK6Z88ep77K+rqxjc2uXbs67Hdqaqq1a9eu1piYGOuuXbsclpclr9jiveKKKxzGVkFBgXXMmDHW6Oho6wcffOCwjav3gOJeCyW9XxR+fgtzNX4XLVpkf60XzqPZ2dnW++67zxodHW3dvXu3/RjExMRY+/Tp45T78vLyrCkpKS4fFwAqK25zAwAUq1OnTho/frysVqtmz56tYcOGqU2bNrrhhhv03HPP6eDBg8VuO2HCBIerJa6++mrVqVNHv/32W6mP+/nnnystLU1jxoxx+mb4xhtv1BVXXKEvv/yyxD5ycnK0atUqRURE6O6773Zo69evn+rXr++0TXx8vCS5nBdly5YtmjFjhsO/wrfmnW3MF154oYYMGWL/22Qy2SembtiwocPVIt7e3uratavy8vL0119/OfXVunVrl+tbrVZ16NDBfhWGdOYWseuvv17Jyck6ceKEfXlQUJD9irTC2rRpo0svvVQbN250ajMqNzdXY8eOVU5Ojh577DH7VRFGff311/Zj//TTT6tbt27666+/1KhRI/Xo0UPHjh3Tli1bdOmll6p///4O29522226+OKLtXnzZh0/frzMsZ86dUpr1qzRhRde6HAll0316tXtV1o1adJEl19+uVavXu1wO05iYqK+/fZbNW7c2NAVCLbxWF4TPtetW9dpWY0aNdS1a1cdPHhQR48edWjz9vZ2efVYWFiY0zJXV9K4Wu9crV27VidPntRNN92k6667zqm9Zs2a9v/7+Pi4PHaXXXaZWrdurW3btik3N/ec4rHdGvXwww87zO8UEhJiHyeubndr2bKl0wT0tquaCt+yacSSJUs0Y8YMTZ8+XU888YR69Oih+Ph4derUSS1btnRYt3///g637kk6p9fNgw8+6LDfQUFBeuCBB2S1WvXZZ585LD+bvNK7d2+H14rJZNKYMWNksVicfsnOExYsWKCAgAA9/fTTDldJ+fj4aPTo0ZJkz/smk0lWq1W+vr4ymx0/glksFvvVUADwX8FtbgCAEg0dOlT9+vXTjz/+qB07dui3337Trl279NFHH2np0qV6/fXX1alTJ4dtgoODXX5wjYqKss/DVBLbOrt27dKRI0ec2rOzs5WUlKTExMRib0f7+++/lZ2drTZt2jh90DWbzWrevHmJxbCitm7d6vTz9A8//LD9drmzjTkmJsbpVhRbMcvVrTa2tri4OKe2ktZ31RYZGWnvq/DztWXLFs2bN0+7du1SUlKSw7xKZ3tbSUFBgcaPH69t27apf//+6t27d5n7+Prrr+3z9fj7+6tu3boaMGCA7r77bvn4+Cg2NlbSmQ/qRY+p2WxWy5YtdeDAAcXGxqpWrVpleuzffvtNVqtVrVu3NnQMBgwYoKefflorVqzQbbfdJunMbZS5ublOH9jd5ciRI3r33Xe1efNmnTx50mny/Li4OHshtEePHnrllVfUs2dP9ezZU23atNFVV12lwMBAh2169OihNWvWaMCAAerZs6euvvpqXXXVVRU2qb6t0HLttdcaWj82Nlbvv/++fv75Z8XHxzsVj5KSks5pUm3bmHN126xtmau5cK644gqnZbZCWGpqapliKDw3T0BAgC655BL16tVLd9xxh9O6hQvKNufyumnRooVTf7ZlReelOpu84qr/OnXqqGbNmtq3b59ycnLK7VccyyozM1N//vmnatSooffee8+p3bZ/Bw4ckHSmgN++fXutX79effr0Ubdu3dSqVSs1bty43G7XAwB3opgEAChVYGCgunfvru7du0s6M5nq1KlT9fHHH2vixIlq166dwwl9cb/A5OXlpYKCglIfLyUlRZL00UcflbheZmZmsW2nT5+WJEVERLhsd7U8IiJC+/fvV1xcnNPE4iNGjNCIESMknfmmecyYMeUSc9EP55LsV+yU1FZ04uyz6ct21Unhvr766iuNHj1aAQEBatu2rerUqSN/f3+ZTCYtX77c6eoVIwoKCvTEE09o5cqVuummm/Tss8+WuQ9Jmjp1arETW0uyXwVU3PxCtuKZq8l7S2MbT0avEurZs6defvllLVmyxF5MWrp0qQICAkrch8KqV6+uAwcO6OTJk7r44ovLHHNhhw4dUr9+/ZSWlqbWrVurQ4cOCgwMlNls1tatW7V161aH4tKwYcMUGhqqTz75RHPmzNHs2bPl5eWl9u3ba8KECfbiY/fu3eXt7a25c+dq4cKF+uijj2QymdS6dWuNHz++THMPGVGW5+GXX37RnXfeKelM8al+/foKCAiQyWTS2rVrtWfPnnP+Ncq0tDSZzWaXxbPq1avLZDK5HG8lvVaN5MjCFi1a5PBrbiVxlffO5XXjahvbssLrn21eKS5/V69eXUePHlV6errHikmpqamyWq06efKk0xcNhRX+wYQ33nhD77zzjlauXKnXX39d0pmxcMstt2jMmDHy9/ev8LgBoLxQTAIAlFlQUJD+97//af369Tp69Kj+/PNPNWrUqNz6t33QWrFihaKjo886RunMpMmuuFrevHlzbd26VVu2bNHVV19dpscrj5grgzfffFO+vr5atmyZ062Apd1a6EpBQYEmTJigzz77TD179tRLL73kdItHebE9B7bbw4o6deqUw3plYbsF5eTJk4Zj6dWrlxYtWqTY2FhlZGRo//796tevn6pVq2aoD9t43Lx5c5nHY1Fz585VSkqKpkyZoptvvtmh7X//+5+2bt3qsMxkMqlv377q27evkpKS9PPPP2vlypX66quvdOjQIX3xxRf24kfnzp3VuXNnpaWl6ZdfftE333yjpUuXavjw4frqq6/K9fYd2+vayPPwzjvvKCcnRx999JHTFS5GrpA0IjAwUAUFBUpMTHQqfCQkJMhqtZ7VeKsorn6V81xeN/Hx8apdu7bTsqLrn21eKS5/x8fHy2QyGX4tVQTbY19xxRUub2V0xd/fX6NHj9bo0aN15MgRbdmyRQsXLtSHH36o7OxsPffccxUZMgCUK+ZMAgCcFZPJVGHfotpuxTiXD3wXXXSRfH199dtvvyk7O9uhraCgQL/88ovTNr1795bZbNbixYuVmJjo9pgrg8OHD+uSSy5x+sAXFxdX5p8tL1xI6tGjh6ZMmVLmeZLKwnYVzPbt251+mtxqtWr79u0O65VFo0aNZDabtWXLFsPz7AwcOFCStHjxYvutSGW5xe2WW26RxWLRokWLSh2PpV1hY/v59aK3pFqtVu3YsaPEbcPCwtS5c2dNmzZNbdq00V9//aVDhw45rRcYGKjrrrtOzz//vPr06aP4+Hjt3LmzxL7LyvY627BhQ6nrHj58WKGhoU6FpMzMTKdbsCTZi5z5+fmG47GNpcLzp9nYCnSV/Re6zuV1Y2tztezyyy+3LzvbvOKq/6NHj+rEiRO67LLLyvWqJNvzb/TKsMDAQF1yySU6cOBAmW9NlM7MYda3b1/7vEvffvttmfsAAE+imAQAKNbChQu1a9cul21r167V/v37FRwcXO5X4tx6662qVq2aXn/9de3bt8+pPTMzs9SijY+Pj7p3766EhATNnj3boW3JkiUu50u66KKLNHz4cCUkJOiee+5x+YFZcj2nSXnEXBnUrl1bhw4dcrhKITs7W88880yZJiu23dr22WefqVu3bnrllVcqtJAknYm9devW2rdvn8M8MtKZW4H279+vNm3alHm+JOnMbTVdunTR4cOHXd7SkpCQ4HTr4eWXX67GjRtrxYoVWr16tWJiYlzOWVOcevXqafjw4UpKStLw4cOLnYtrzpw5mjFjRol92eZC+vnnnx2Wz5o1S3/++afT+lu2bHEqLOTm5tpv57TNQ7Zt2zaXxRdb8au8fuLeplOnTqpZs6a++OIL/fjjj07tha9YqlOnjlJSUhxej/n5+Xr55ZddFudsE0QXnpC+NH369JEkzZw50+G2rtOnT9vHiW2dyupcXjdvvfWW/dZD6cx+v/322zKZTA7zop1tXvnss88c5pyyWq2aOnWq8vPzy/24hoSESFKZJugfPHiwMjMz9eSTTzrczmZz5MgRe7EsMTHR5WstJSVFubm5HrtdDwDOFre5AQCK9cMPP+jpp59WvXr11Lx5c9WoUUMZGRmKjY3V9u3bZTab9fTTT5f7SXB4eLimTp2qkSNH6uabb1a7du108cUXKycnR0ePHtXWrVvVrFkzffDBByX28+ijj2rTpk2aNm2afv75Z11++eXav3+/1q9fr7Zt2+qnn35y2mb06NHKzc3VnDlz1L17d7Vo0UINGjSQv7+/EhIStHfvXu3atUsBAQEO39SXV8yeNnjwYD3//PPq3bu3unXrpry8PG3cuFFWq1UNGjRwOZmwKzNnztTy5csVEBCg+vXr6+2333Zap3PnzuU+p84zzzyj22+/XU899ZS+++47XXrppdq3b5++/fZbhYeH65lnnjnrvp9++mnt27dP77zzjn744Qe1adNGVqtVBw8e1E8//aSNGzc63dI1cOBATZw4UVLZrkqyGTVqlLKzszV37lx1795drVu3VnR0tLy8vPTPP/9o48aNSk5O1qhRo0rsZ+DAgVq2bJkeeeQRde/eXaGhofr111/1xx9/6Prrr9f333/vsP5DDz2kwMBANW3aVLVr17aPg7/++ktdu3a1F6cmTZqkuLg4XXXVVapTp45MJpN+/vln7dq1S1deeaWuuuqqMu9zSXx8fDRt2jQNHz5c99xzj9q1a6cGDRooLS1NsbGxysrKsv+K2KBBg/TTTz/p9ttvV/fu3eXj46OtW7fq5MmTatWqldOtfVdeeaX8/Pw0b948paSk2OdBevDBB4uNp2XLlho8eLDmz5+vnj17qkuXLrJarVqzZo1OnDihwYMHO/2iWmV0tq+b+vXr2/dbkn2/hw4dqsaNG9vXO9u80rZtWw0cOFA9evRQeHi4Nm3apN9++01XXnmlBg0aVK7HoE2bNpo9e7b+97//qUuXLvL391ft2rVL/LGAgQMHaufOnVq+fLl++eUXXXPNNapRo4YSEhJ04MAB7dy5U6+99pouuOACnTx50v7rdDExMYqKilJycrLWrVun3NxcDRs2rFz3BwAqGsUkAECxHnvsMTVv3lwbN27Utm3b7HNnREVFqU+fPho0aFC5zpVU2PXXX6/ly5frgw8+0KZNm7RhwwYFBAQoKipKt9xyi2666aZS+6hRo4YWLlyoV155RT/99JO2b9+uK664QnPmzNHmzZtdFpPMZrPGjx+vm266SQsXLtS2bdu0e/du5ebmKiQkRJdeeqnGjh2r3r17O82RUh4xe9odd9whLy8vLViwQIsXL1ZwcLDat2+vRx99VCNHjjTcj21C3YyMDL3zzjsu16lTp065F5Muvvhiffrpp3rzzTf1448/av369QoLC9Mtt9yihx9+2F4EORvh4eFavHixPvjgA61evVoLFiyQr6+vLrjgAt17770ub/u88cYb9eyzz8psNp/V8282mzVhwgT17NlTn3zyibZv367t27eroKBAkZGRatu2rW699VZdc801JfZz+eWX64MPPtC0adO0Zs0aWSwWNWvWTJ988om+/fZbp2LSmDFj9OOPP2r37t367rvv5O/vrwsvvFDPPPOM+vbta1/vvvvu05o1a/T777/rp59+kpeXl+rUqaPHHntMt99+e4VcjdasWTMtX75c7777rn766Sdt2rRJwcHBuuSSS+y3FkpShw4dNH36dL377rv64osv5OfnpzZt2mjmzJmaOXOmU7+hoaGaPn26ZsyYoSVLligrK0tSycUkSXryySfVsGFDffLJJ1q8eLEk6dJLL9UjjzyiW2+9tRz3vOKc7evmjTfe0PTp0/Xll18qPj5eF1xwgZ588kmnQs/Z5pWhQ4eqU6dOmjdvng4dOqSQkBANGTJEI0eOLPcvMdq3b6/HH39cS5Ys0Zw5c5Sbm6tWrVqVWEwymUx66aWXdN1112nJkiX6/vvvlZGRofDwcNWrV0/jxo2zz3dWp04djRgxQps3b7YXgcPCwnT55ZdryJAhuu6668p1fwCgopmsRa9hBgAAQLnYvXu3+vbtq5tvvllTpkzxdDgAAADlgjmTAAAAKojttsbbbrvNw5EAAACUH25zAwAAKEfHjh3TypUrtW/fPn311Vdq27atmjVr5umwAAAAyg3FJAAAgHJ05MgRvfbaawoICFCHDh30/PPPezokAACAcsWcSQAAAAAAADCMOZMAAAAAAABgGMUkAAAAAAAAGEYxCQAAAAAAAIZRTAIAAAAAAIBhFJMAAAAAAABgGMUkAAAAAAAAGEYxCQAAAAAAAIZRTAIAAAAAAIBhFJMAAAAAAABgGMUkAAAAAAAAGEYxCQAAAAAAAIZRTAIAAAAAAIBhFJMAAAAAAABgGMUkAAAAAAAAGEYxCQAAAAAAAIZRTAIAAAAAAIBhFJMAAAAAAABgGMUkAAAAAAAAGEYxCQAAAAAAAIZRTAIAAAAAAIBhFJMAAAAAAABgGMUkAAAAAAAAGObl6QDg2o4dO2S1WuXt7e3pUAAAAAAAwHkuNzdXJpNJzZo1K3VdrkyqpKxWq6xWq6fDgAFWq1U5OTk8X6i0GKOozBifqOwYo6jsGKOo7Bij/x1lqUNwZVIlZbsiqXHjxh6OBKXJyMhQbGysLr30UgUEBHg6HMAJYxSVGeMTlR1jFJUdYxSVHWP0v2P37t2G1+XKJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMUlSenq6pk+frmHDhqlVq1aKiYnRsmXLDG+fmpqqp556Sm3atNGVV16pwYMH6/fff6/AiAEAAAAAADyDYpKkpKQkzZw5UwcOHFBMTEyZti0oKNC9996rlStXatCgQXr88ceVmJiowYMH6+DBgxUTMAAAAAAAgId4eTqAyqBGjRr66aefFBkZqd27d6tv376Gt129erV27NihN954Q926dZMkde/eXV27dtWMGTP02muvVVTYAAAAAAAAbseVSZJ8fHwUGRl5Vtt+/fXXql69urp06WJfFh4eru7du2vdunXKyckprzABAAAAAAA8jmLSOYqNjdXll18us9nxUDZu3FiZmZn6+++/PRQZAAAAAABA+eM2t3N06tQptWjRwml5jRo1JElxcXFlnoepsNzcXIe/TSaTvLy8ZLValZeX57S+t7e3JCkvL09Wq9WhzWKxyGw2Kz8/XwUFBWXq18vLSyaTyWW/ZrNZFotFBQUFys/PLzamovtSkf2ey76WtV/berYYy/sY2uItLiZPHENbv+V1DIvu69kcQ1u/JR3Dov0ePnxYCQkJslgs9n6LMplM9mNYNF5bTJJcbmvrNz8/3ynec+nXbDbbj2HRfm3bWq1W+3HIzMzUP//8o7S0NAUFBZVbv672taKOYVn6jYiI0IUXXlhpcoTRfqtqjrD1bft/ZcoRRvotj/fAko6hp94DjZxH2HJo4f35L+QII/0WzocZGRn2HOrv71/qvpZn/nbHvhbt15ZDbfF6OkeUpd+qmiOK5tHS+nVXjihLv1X1s0bRPPpfyBFn029aWpqOHDnikEdL2ldbv5Upz9r6LWlfbf0WzqO2tv/SeYRRFJPOUVZWlnx8fJyW25ZlZ2efdd9Wq1WnTp1yWObv76+wsDDl5+c7tUlS7dq1JUnJyclOt9iFhoYqICBAWVlZSklJcWjz9fVVRESEy8eUpKioKFksFqWmpiorK8uhLTg4WIGBgcrOzlZSUpJDm7e3t/0Wwvj4eKcXT2RkpLy9vZWWlqaMjAyHtsDAQAUHBys3N9chyUpnXuhRUVGSpMTERKcXSEREhHx9fZWenq60tDSHtoCAAIWGhiovL89pX00mk2rVqiXpzDEs+uIKCwuTv7+/MjMzlZqaKunfF6Dtg3pBQYHLY1izZk2ZTCalpKQ4jYuQkBBVq1ZNWVlZSk5Odmjz8fFR9erVJcllvzVq1JCXl5dOnz6tzMxMh7agoCAFBQUpJydHiYmJDm1eXl72omdCQoJTAqpevbp8fHyUlpam9PR0h7Zq1aopJCSk1GOYlJTklIzDw8Pl5+enjIwMnT592qHNz89P4eHhxR7Dws9NSePbyDE8evSorm/fThmZZ/8aReUU4O+rH37coKuuukqS53OETWnju6rmCFtMycnJSk9PrzQ5orCS3gONHsPS3gNLOobx8fEObWazWTVr1pRU9jxbXucRf/zxBzn0PBXg76vv1/+oOnXqVIocUVnPIwrzdI6wxWvLo5UhR/BZo/TziN9++01tr72aPHoeKpxHJc/niLKcR+Tn58tisRjaT4pJ58jPz8/lvEi2Zb6+vmfdt8lkcprLyWQySTqT4Eqa5yk0NNTltwW2mIsWwGz9unpMSfbb+IKDg+1XNhRt8/X1LTEm25twYbaqcmBgoKpVq+ay38JvEq6Eh4c7LbPta7Vq1ezVbxvbvnp5eZV6DIvr19/f3/7cZmRkKD4+XoGBgfa4XfVre9yQkBCXFWnpzHNT3HMuyWW/tpiCgoLsMRTtt7R5wSIiIortNzAwUAEBAS77Le0YhoWFFdtvQECA/Pz8HNps+1rcMbQpbXwbOYb//POPMjKzteBJLzWsZxLOD7GHrBo0KdvhpM/TOaJov+SIf4WFhcnX11fx8fH2DyGVJUe42p+S3gNLO4alvQe6O8+e63mE1Wolh56HbDnUarUqMjKyUuSI4volR/x7DENDQx3yaGGeyhF81ih9fOfm5pJHz0NF86jk+RxRljxbtLBaEopJ5ygyMtJldT0uLk7Sv7e7nS3b5WdFmUymYtukfweWKxaLpdhq47n0a7v0rzie6Pdc9tVov7b1bH9zDCu+37Pd18L92vpoWM+k5tFMH3f+OPPNeOExUlXGd2kxVdYcYWsv/P9z7bc8ckR59iud/TH01HNT2nkEOfR89W8OLTw+OI+o2H6lc8sRxeXRc+mXzxrG+i2PfSWPnm9c51HbsuJUxvOI0jBqz1GDBg30xx9/OF3au2vXLvn7++uiiy7yUGQAAAAAAADlj2JSGcTFxWn//v0Oc2R069ZN8fHxWrNmjX1ZYmKiVq9erQ4dOricTwkAAAAAAOC/itvc/t+CBQuUmppqvz3tu+++04kTJyRJgwcPVlBQkKZOnarly5dr3bp1uuCCCyRJXbt21ZVXXqkJEybor7/+UlhYmD755BPl5+drxIgRHtsfAAAAAACAikAx6f/Nnj1bR48etf+9Zs0a+9VGN910k9NEWTYWi0WzZs3SlClTNH/+fGVnZ6tx48Z68cUXdfHFF7sldgAAAAAAAHehmPT/vv3221LXeemll/TSSy85LQ8JCdHkyZM1efLkiggNAAAAAACg0mDOJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJAAAAAAAABhGMQkAAAAAAACGUUwCAAAAAACAYRSTAAAAAAAAYBjFJEk5OTl65ZVX1LZtWzVp0kT9+vXThg0bDG27ceNGDR48WK1bt1aLFi3Ut29fffbZZxUbMAAAAAAAgIdQTJI0fvx4zZ07V7169dLEiRNlsVh07733avv27SVut27dOt19993Kzc3ViBEjNHr0aPn5+WncuHGaO3eue4IHAAAAAABwIy9PB+Bpu3bt0pdffqmxY8dq2LBhkqTevXurZ8+eevXVV7Vw4cJit/3oo48UGRmpDz/8UD4+PpKkAQMGqHv37lq2bJnuuusud+wCAAAAAACA21T5K5NWr14ti8WiAQMG2Jf5+vqqb9++2rFjh44fP17stmlpaQoJCbEXkiTJy8tLYWFh8vPzq9C4AQAAAAAAPKHKF5NiY2NVv359BQYGOixv0qSJvb04rVq10r59+zRt2jQdOnRIhw8f1syZM/Xbb79p+PDhFRo3AAAAAACAJ1T529xOnTqlyMhIp+W2ZXFxccVu++CDD+qff/7RO++8o7fffluS5O/vr+nTp6tz587lEl9ubq7D3yaTSV5eXrJarcrLy3Na39vbW5KUl5cnq9Xq0GaxWGQ2m5Wfn6+CgoIy9evl5SWTyeSyX7PZLIvFooKCAuXn5xcbU9F9qch+z2Vfy9qvbT1bjOV9DG3xFheTJ46hrd/yOoZF9/VsjqGt35KOYeF+XfWP80fh59fTOcJov1U1R9j6tv2/suQIo/2Wx3tgScfQU++BpZ1HkEPPb3l5ecrNza0UOaIs/VbVHFE0j5bWrztyBJ81jB1DnL9seVTyfI4oa79GVfliUlZWlsNtaja+vr729uL4+Piofv366tq1q7p06aL8/HwtXrxYjz/+uObMmaMrr7zynGKzWq06deqUwzJ/f3+FhYUpPz/fqU2SateuLUlKTk5WTk6OQ1toaKgCAgKUlZWllJQUhzZfX19FRES4fExJioqKksViUWpqqtMxCQ4OVmBgoLKzs5WUlOTQ5u3tbS/MxcfHO714IiMj5e3trbS0NGVkZDi0BQYGKjg4WLm5uUpISHBos1gsioqKkiQlJiY6vUAiIiLk6+ur9PR0paWlObQFBAQoNDRUeXl5TvtqMplUq1YtSWeOYdEXV1hYmPz9/ZWZmanU1FRJ/74A09LSFBQUpIKCApfHsGbNmjKZTEpJSVF2drZDW0hIiKpVq6asrCwlJyc7tPn4+Kh69eqS5LLfGjVqyMvLS6dPn1ZmZqZDW1BQkIKCgpSTk6PExESHNi8vL9WoUUOSlJCQ4JSAqlevLh8fH6WlpSk9Pd2hrVq1agoJCSn1GCYlJTm9UYaHh8vPz08ZGRk6ffq0Q5ufn5/Cw8OLPYaFn5uSxreRY1h0rOL8UjjHeTpH2JQ2vqtqjrDFlJycrPT09EqTIwor6T3Q6DEs7T2wpGMYHx/v0GY2m1WzZk1JZc+z5XUeQQ49vyUlJenUqVOVIkdU1vOIwjydI2zx2vJoZcgRfNYo/Tyi6LHH+cWWRyXP54iynEfk5+fLYrEY2scqX0zy8/NzSoSS7CfyJc199Nxzz2nnzp1avny5zOYzdwx2795dPXv21OTJk7VkyZJzis1kMjldNWUymSSdSXCurqiyCQ0NdfltgXRmn4oW0Gz9unpMSfb9Cw4OVlBQkMs2X1/fEmOyvQkXZvs2PTAwUNWqVXPZb+E3CVfCw8Odltn2tVq1avL393dos+2rl5dXqcewuH79/f3tBceMjAzFx8fbb5U0m80u+7U9bkhIiMuKtHTmuSnuOZfksl9bTEFBQU63a9r69fHxKXFfIyIiiu03MDBQAQEBLvst7RiGhYUV229AQIDT68u2r8UdQ5vSxreRY+gqNpw/QkJC7P/3dI4o2i854l9hYWHy9fVVfHy8/UNIZckRrvanpPfA0o5hae+B7s6z53oeQQ49v4WFhSkyMrJS5Iji+iVH/HsMQ0NDHfJoYZ7KEXzWKH18F91PnF9seVTyfI4oS54tWlgtSZUvJkVGRurkyZNOy21VRFslsKicnBx9+umnGj58uP2Jks4ko3bt2umjjz5STk6Oy6ueysJ2+VlRJpOp2Dbp34HlisViKbbaeC79ms1mh2NRlCf6PZd9NdqvbT3b3xzDiu/3bPe1cL8l9YH/vsLPb1UZ36XFVFlzhK298P/Ptd/yyBHl2a909sfQU89NaecR5NDzm5eXl8P44DyiYvuVzi1HFJdHz6VfPmsY67ei9hX/fUXzqG1ZcSrjeURpqvwE3A0aNNDBgwedLk/cuXOnJKlhw4Yut0tOTlZeXp7L+w/z8vJUUFDgdLkvAAAAAADAf12VLyZ169ZN+fn5WrRokX1ZTk6Oli1bpqZNm9rvaT127Jj2799vXyciIkLBwcH65ptvHG6TS09P13fffaeLL764xFvkAAAAAAAA/ouq/LV1TZs2Vbdu3TR16lQlJCSoXr16Wr58uY4eParJkyfb1xs3bpy2bt2qvXv3SjpzKdndd9+tadOmacCAAbr55ptVUFCgpUuX6sSJE3rllVc8tUsAAAAAAAAVpsoXkyRpypQpmjZtmr744gulpKQoJiZG77zzjlq2bFnidg888IAuuOACffjhh5o5c6ZycnIUExOj6dOnq2vXrm6KHgAAAAAAwH0oJunMLwOMGzdO48aNK3ad+fPnu1zeq1cv9erVq6JCAwAAAAAAqFSq/JxJAAAAAAAAMI5iEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMMztxaRZs2YpISHB3Q8LAAAAAACAcuD2YtLUqVPVvn17PfLII/rxxx/d/fAAAAAAAAA4B24vJk2aNElXXHGF1qxZo3vvvVcdO3bUzJkzdeLECXeHAgAAAAAAgDJyezGpb9++WrRokVauXKnBgwcrIyNDM2bMUKdOnXT//fdr3bp1KigocHdYAAAAAAAAMMBjE3BfeumleuKJJ/Tjjz9q6tSpatWqldavX6+HH35Y7du31+uvv64jR454KjwAAAAAAAC44PFfc/P29laPHj00Z84cffzxx4qMjNSpU6f07rvvqmvXrrrnnnu0c+dOT4cJAAAAAAAASV6eDsBqteqHH37Q4sWLtX79euXl5al27dq6+eab9ccff+iHH37Qhg0b9MILL6h3796eDhcAAAAAAKBK81gx6dixY1q6dKmWLVumkydPymw2q3379howYICuu+46mUwmSdJff/2l++67TzNnzqSYBAAAAAAA4GFuLyatXr1aS5Ys0aZNm1RQUKCoqCg99NBD6tevn6KiopzWv/TSS3XzzTfr3XffdXeoAAAAAAAAKMLtxaRRo0bJbDarbdu2GjhwoK6//nqZzSVP3XTxxRerefPmbooQAAAAAAAAxXF7Men+++9X//79Vbt2bcPb9OzZUz179qzAqAAAAAAAAGCE23/N7dprry11nePHj2vbtm1uiAYAAAAAAABl4fZi0pAhQ7Rs2bIS1/nss880ZMgQN0UEAAAAAAAAo9xeTLJaraWuU1BQYP81NwAAAAAAAFQebi8mGXHo0CEFBQV5OgwAAAAAAAAU4ZYJuCdMmODw97p163T06FGn9QoKCnT8+HFt375d1113nTtCAwAAAAAAQBm4pZi0fPly+/9NJpNiY2MVGxvrcl2TyaTGjRs7FaAqUk5Ojt544w19/vnnSk1NVUxMjEaNGmVosnBJWrVqlebNm6e9e/fKy8tLl156qUaOHKmrr766giMHAAAAAABwL7cUk9atWyfpzHxJnTt31p133ulygm2LxaLg4GAFBAS4Iyy78ePH6+uvv9aQIUNUv359LV++XPfee6/mzZunFi1alLjtjBkzNHPmTHXt2lV9+vRRXl6e/vzzT508edJN0QMAAAAAALiPW4pJderUsf//xRdfVMOGDR2WedKuXbv05ZdfauzYsRo2bJgkqXfv3urZs6deffVVLVy4sNhtf/31V82cOVPjx4/XXXfd5aaIAQAAAAAAPMftE3D36dNHDRo0cPfDFmv16tWyWCwaMGCAfZmvr6/69u2rHTt26Pjx48VuO2/ePFWvXl1DhgyR1WpVenq6O0IGAAAAAADwmAq/Mmnbtm2SpCZNmsjX19f+txEtW7asqLDsYmNjVb9+fQUGBjosb9Kkib29Vq1aLrfdtGmTmjVrpg8//FBvv/22kpOTFRkZqfvvv1+DBg2q8NgBAAAAAADcrcKLSYMHD5bJZNKqVat00UUX2f82orhJusvTqVOnFBkZ6bTctiwuLs7ldikpKUpKStIvv/yizZs36+GHH1atWrW0bNkyPf/88/Ly8tLAgQPPOb7c3FyHv00mk7y8vGS1WpWXl+e0vre3tyQpLy9PVqvVoc1ischsNis/P18FBQVl6tfLy0smk8llv2azWRaLRQUFBcrPzy82pqL7UpH9nsu+lrVf23q2GMv7GNriLS4mTxxDW7/ldQyL7uvZHENbvyUdw8L9uuof54/Cz6+nc4TRfqtqjrD1bft/ZckRRvstj/fAko6hp94DSzuPIIee3/Ly8pSbm1spckRZ+q2qOaJoHi2tX3fkCD5rGDuGOH/Z8qjk+RxR1n6NqvBi0kMPPSSTyaSwsDCHvyuLrKws+fj4OC339fW1t7uSkZEhSUpOTtbrr7+uHj16SJK6deumXr166e233z7nYpLVatWpU6cclvn7+yssLEz5+flObZJUu3Zte1w5OTkObaGhoQoICFBWVpZSUlIc2nx9fRUREeHyMSUpKipKFotFqampTsckODhYgYGBys7OVlJSkkObt7e3vTAXHx/v9OKJjIyUt7e30tLS7MfUJjAwUMHBwcrNzVVCQoJDm8ViUVRUlCQpMTHR6QUSEREhX19fpaenKy0tzaEtICBAoaGhysvLc9pXk8lkvxItOTnZ6cUVFhYmf39/ZWZmKjU1VdK/L8C0tDQFBQWpoKDA5TGsWbOmTCaTUlJSlJ2d7dAWEhKiatWqKSsrS8nJyQ5tPj4+ql69uiS57LdGjRry8vLS6dOnlZmZ6dAWFBSkoKAg5eTkKDEx0aHNy8tLNWrUkCQlJCQ4JaDq1avLx8dHaWlpTrdwVqtWTSEhIaUew6SkJKc3yvDwcPn5+SkjI0OnT592aPPz81N4eHixx7Dwc1PS+DZyDIuOVZxfCuc4T+cIm9LGd1XNEbaYkpOTlZ6eXmlyRGElvQcaPYalvQeWdAzj4+Md2sxms2rWrCmp7Hm2vM4jyKHnt6SkJJ06dapS5IjKeh5RmKdzhC1eWx6tDDmCzxqln0cUPfY4v9jyqOT5HFGW84j8/HxZLBZD+1jhxaQRI0aU+Len+fn5OSVCSfYTeT8/P5fb2YpN3t7e6tq1q3252WxW9+7dNWPGDB07dsyecM+GyWRyumrKVoizWCwur6iyCQ0NdfltgXRmn4oW0Gz9unpM6cx+SWeSeVBQkMs2X1/fEmOyvQkXZvs2PTAwUNWqVXPZb+E3CVfCw8Odltn2tVq1avL393dos+2rl5dXqcewuH79/f3tYyAjI0Px8fH2WyXNZrPLfm2PGxIS4rIiLZ15bop7ziW57NcWU1BQkNPtmrZ+fXx8StzXiIiIYvsNDAx0+oVFW7+lHUNbEdlVvwEBAU6vL9u+FncMbUob30aOoavYcP4ICQmx/9/TOaJov+SIf4WFhcnX11fx8fH2DyGVJUe42p+S3gNLO4alvQe6O8+e63kEOfT8FhYWpsjIyEqRI4rrlxzx7zEMDQ11yKOFeSpH8Fmj9PFddD9xfrHlUcnzOaIsebZoYbUkbvk1t8osMjJSJ0+edFpuqyLaKoFFhYaGytfXV8HBwU6VO9sbampq6jkVk6R/Lz8rymQyFdsm/TuwXLFYLMVWG8+lX7PZbB+0rnii33PZV6P92taz/c0xrPh+z3ZfC/dbUh/47yv8/FaV8V1aTJU1R9jaC///XPstjxxRnv1KZ38MPfXclHYeQQ49v3l5eTmMD84jKrZf6dxyRHF59Fz65bOGsX4ral/x31c0j9qWFacynkeUxu2/5lbZNGjQQAcPHnS6PHHnzp2SpIYNG7rczmw2q2HDhkpMTHS6ssk2zxLf2gEAAAAAgPNNhZdDhwwZclbbmUwmzZs3r5yjcdatWzfNnj1bixYt0rBhwyRJOTk5WrZsmZo2bWq/p/XYsWPKzMzUJZdcYt+2e/fu+vXXX/XZZ5+pf//+ks7cHrdixQpdeuml9vtsAQAAAAAAzhcVXkzaunXrWW3nrkm6mzZtqm7dumnq1KlKSEhQvXr1tHz5ch09elSTJ0+2rzdu3Dht3bpVe/futS8bOHCgli5dqueee05///23ateurc8//1zHjh3T22+/7Zb4AQAAAAAA3KnCi0l79uyp6Ic4Z1OmTNG0adP0xRdfKCUlRTExMXrnnXfUsmXLErfz8/PTvHnz9Morr2jZsmXKyMhQw4YN9e6776pdu3Zuih4AAAAAAMB9mPVLZ34ZYNy4cRo3blyx68yfP9/l8oiICL300ksVFRoAAAAAAEClUuUn4AYAAAAAAIBxFX5l0rZt2yRJTZo0ka+vr/1vI0q7zQwAAAAAAADuVeHFpMGDB8tkMmnVqlW66KKL7H8bERsbW8HRAQAAAAAAoCwqvJj00EMPyWQyKSwszOFvAAAAAAAA/PdUeDFpxIgRJf4NAAAAAACA/w4m4AYAAAAAAIBhFX5lUnFycnK0fv16/fHHHzp9+rSCgoJ0+eWXq3379vLx8fFUWAAAAAAAACiBR4pJ69at0//+9z8lJibKarXal5tMJkVEROi5555Tx44dPREaAAAAAAAASuD2YtKmTZv0yCOPyGw269Zbb1WLFi0UERGhhIQEbdu2TV988YVGjBih999/X1dffbW7wwMAAAAAAEAJ3F5Mmj59unx9fbVw4UJFR0c7tPXu3VuDBw/WbbfdphkzZlBMAgAAAAAAqGTcPgF3bGysevTo4VRIsmnQoIG6d++uP/74w82RAQAAAAAAoDRuLyb5+fkpPDy8xHUiIiLk5+fnpogAAAAAAABglNuLSddcc402btxY4jobN27Utdde66aIAAAAAAAAYJTbi0njxo1TYmKixo4dq+PHjzu0HT9+XI8//riSkpI0duxYd4cGAAAAAACAUlT4BNxDhgxxWhYcHKwVK1Zo1apVqlWrlv3X3I4fP678/HzFxMRo7NixmjdvXkWHBwAAAAAAgDKo8GLS1q1bi23Ly8vTkSNHdOTIEYfle/bskclkqujQAAAAAAAAUEYVXkzas2dPRT8EAAAAAAAA3MTtcyYBAAAAAADgv4tiEgAAAAAAAAyr8NvcinPixAlt3rxZcXFxysnJcWo3mUx66KGHPBAZAAAAAAAAiuORYtLLL7+s+fPnKz8/377MarXaJ922/Z9iEgAAAAAAQOXi9tvcFi9erDlz5qh169aaPn26rFarevfuralTp2rgwIGyWCzq1q2b5s2b5+7QAAAAAAAAUAq3X5m0aNEi1alTR++9957M5jO1rDp16qhHjx7q0aOHunfvrrvvvlvdunVzd2gAAAAAAAAohduvTDpw4IDatWtnLyRJcrjdrVWrVmrfvr1mz57t7tAAAAAAAABQCo/8mltwcLD9//7+/kpOTnZov+iii7Rv3z43RwUAAAAAAIDSuL2YFBUVpRMnTtj/vvDCC7Vz506Hdfbt26eAgAB3hwYAAAAAAIBSuL2Y1Lx5c4fiUadOnRQbG6v//e9/+v777/Xaa6/phx9+UIsWLdwdGgAAAAAAAErh9gm4b775ZsXFxeno0aOqU6eOhg0bpu+//16LFy/WkiVLZLVaVadOHY0dO9bdoQEAAAAAAKAUbi8mtW7dWq1bt7b/Xa1aNS1atEjr1q3T4cOHVadOHXXo0IHb3AAAAAAAACohtxeTXPH29la3bt08HQYAAAAAAABK4dFiUlJSkvbs2aO0tDQFBgaqQYMGCgsL82RIAAAAAAAAKIFHikn//POPJk+erPXr18tqtdqXm0wmXX/99XriiSd0wQUXeCI0AAAAAAAAlMDtxaTDhw/rtttuU0JCgurVq6fmzZurevXqio+P144dO/Ttt99q586dWrhwoerWrevu8AAAAAAAAFACtxeTXn31VSUmJurZZ59V//79ZTKZ7G1Wq1WLFi3Ss88+q1deeUXTp093d3gAAAAAAAAogduLSZs2bVLHjh01YMAApzaTyaSBAwdq/fr12rRpk7tDAwAAAAAAQCnM7n7A/Px8XXrppSWuEx0drfz8fDdFBAAAAAAAAKPcXky64oor9Ndff5W4zr59+9SoUSM3RQQAAAAAAACj3F5MGjVqlH744QctWbLEZfuiRYv0008/adSoUe4NDAAAAAAAAKWq8DmT3nzzTadlrVu31v/+9z/Nnj3b4dfcfvnlFx08eFBt27bVpk2b1Lx584oODwAAAAAAAGXgkWKSzd9//62///7bafmPP/6on376SQ899FBFhgYAAAAAAIAyqvBi0ocffljRDwEAAAAAAAA3qfBiUqtWrSr6IQAAAAAAAOAmbp+AGwAAAAAAAP9dFX5lUnF+/vlnLV++XLGxsUpLS1NgYKAuv/xy3XzzzWrRooWnwgIAAAAAAEAJPFJMeuGFFzR//nxZrVZJkslkktVq1e+//66lS5dqyJAhmjBhgidCAwAAAAAAQAncXkxavny5PvzwQ9WvX18PP/ywWrdurerVqyshIUFbtmzRm2++qQ8//FANGzZU79693R0eAAAAAAAASuD2OZM++eQT1axZU0uWLFHPnj0VGRkpk8mk6tWr68Ybb9TixYsVFRWljz/+2N2hAQAAAAAAoBRuLybt27dPXbp0UVBQkMv2oKAgdenSRfv27XNzZAAAAAAAAChNpfw1N5PJ5OkQAAAAAAAA4ILbi0mXXXaZ1qxZo/T0dJftaWlpWrNmjS677DI3RwYAAAAAAIDSuL2YNGDAAJ04cUIDBw7U119/rcTERElSYmKiVq9erdtuu00nTpzQbbfd5u7QAAAAAAAAUAq3/5rbrbfeqtjYWC1YsECjRo2SJJnNZhUUFEiSrFarBg0apD59+rg7NAAAAAAAAJTC7cUkSXryySfVrVs3LVu2THv27FFaWpoCAwPVsGFD9enTRy1atPBEWAAAAAAAACiF24tJ27ZtU2BgoFq0aEHRCAAAAAAA4D/G7XMmDRkyRIsWLXL3wwIAAAAAAKAcuL2YFBERIV9fX3c/LAAAAAAAAMqB24tJ11xzjbZu3Sqr1eruhy5WTk6OXnnlFbVt21ZNmjRRv379tGHDhjL3M3ToUMXExOi5556rgCgBAAAAAAA8z+3FpEcffVTJycl66qmnlJyc7O6Hd2n8+PGaO3euevXqpYkTJ8pisejee+/V9u3bDfexZs0a/frrrxUXJAAAAAAAQCXg9gm4H3/8cQUFBenTTz/VF198oQsuuEAREREymUwO65lMJs2bN6/C49m1a5e+/PJLjR07VsOGDZMk9e7dWz179tSrr76qhQsXltpHdna2XnrpJQ0fPlzTp0+v6JABAAAAAAA8xu3FpK1bt9r/n5OTowMHDujAgQNO6xUtLlWU1atXy2KxaMCAAfZlvr6+6tu3r6ZOnarjx4+rVq1aJfbx3nvvyWq1atiwYRSTAAAAAADAec3txaQ9e/a4+yFLFBsbq/r16yswMNBheZMmTeztJRWTjh07pvfee08vvPCC/Pz8KjRWAAAAAAAAT3NbMWnHjh16/fXXtXv3bpnNZjVp0kSjR4+2F2085dSpU4qMjHRablsWFxdX4vYvvfSSGjZsqBtvvLFC4svNzXX422QyycvLS1arVXl5eU7re3t7S5Ly8vKcJjm3WCwym83Kz89XQUFBmfr18vKSyWRy2a/ZbJbFYlFBQYHy8/OLjanovlRkv+eyr2Xt17aeLcbyPoa2eIuLyRPH0NZveR3Dovt6NsfQ1m9Jx7Bwv676x/mj8PPr6RxhtN+qmiNsfdv+X1lyhNF+y+M9sKRj6Kn3wNLOI8ih57e8vDzl5uZWihxRln6rao4omkdL69cdOYLPGsaOIc5ftjwqeT5HlLVfo9xSTNq7d6/uuusuZWdn25dt2rRJO3bs0JIlS3TZZZe5IwyXsrKy5OPj47Tc19fX3l6czZs3a82aNVq8eHGFxGa1WnXq1CmHZf7+/goLC1N+fr5TmyTVrl1bkpScnKycnByHttDQUAUEBCgrK0spKSkObb6+voqIiHD5mJIUFRUli8Wi1NRUp2MSHByswMBAZWdnKykpyaHN29vbXpiLj493evFERkbK29tbaWlpysjIcGgLDAxUcHCwcnNzlZCQ4NBmsVgUFRUlSUpMTHR6gURERMjX11fp6elKS0tzaAsICFBoaKjy8vKc9tVkMtmvREtOTnZ6cYWFhcnf31+ZmZlKTU2V9O8LMC0tTUFBQSooKHB5DGvWrCmTyaSUlBSH14IkhYSEqFq1asrKynKamN7Hx0fVq1eXJJf91qhRQ15eXjp9+rQyMzMd2oKCghQUFKScnBwlJiY6tHl5ealGjRqSpISEBKcEVL16dfn4+CgtLU3p6ekObdWqVVNISEipxzApKcnpjTI8PFx+fn7KyMjQ6dOnHdr8/PwUHh5e7DEs/NyUNL6NHMOiYxXnl8I5ztM5wqa08V1Vc4QtpuTkZKWnp1eaHFFYSe+BRo9hae+BJR3D+Ph4hzaz2ayaNWtKKnueLa/zCHLo+S0pKUmnTp2qFDmisp5HFObpHGGL15ZHK0OO4LNG6ecRRY89zi+2PCp5PkeU5TwiPz9fFovF0D66pZg0a9YsZWdn6/7779fgwYMlSR999JHeeustvffee5oyZYo7wnDJz8/PKRFKsp/IF3frWl5eniZPnqybb765wq6uMplMTldN2eaSslgsLq+osgkNDXX5bYF0Zp+KFtBs/bp6TOnMgJPOJPOgoCCXbb6+viXGZHsTLsz2bXpgYKCqVavmst/CbxKuhIeHOy2z7Wu1atXk7+/v0GbbVy8vr1KPYXH9+vv72wuOGRkZio+Pt98qaTabXfZre9yQkBCXFWnpzHNT3HMuyWW/tpiCgoKcbte09evj41PivkZERBTbb2BgoAICAlz2W9oxDAsLK7bfgIAAp9eXbV+LO4Y2pY1vI8fQVWw4f4SEhNj/7+kcUbRfcsS/wsLC5Ovrq/j4ePuHkMqSI1ztT0nvgaUdw9LeA92dZ8/1PIIcen4LCwtTZGRkpcgRxfVLjvj3GIaGhjrk0cI8lSP4rFH6+C66nzi/2PKo5PkcUZY8W7SwWhK3FJN+/vlnXXXVVRo1apR92SOPPKKtW7dq27Zt7gihWJGRkTp58qTTclsV0VYJLOqzzz7T33//rWeffVb//POPQ1t6err++ecfRUREOCWXsrJdflaUyWQqtk36d2C5YrFYiq02nku/ZrPZPmhd8US/57KvRvu1rWf7m2NY8f2e7b4W7rekPvDfV/j5rSrju7SYKmuOsLUX/v+59lseOaI8+5XO/hh66rkp7TyCHHp+8/LychgfnEdUbL/SueWI4vLoufTLZw1j/VbUvuK/r2getS0rTmU8jyhN8b2Wo/j4eDVt2tRpeZMmTZwuuXK3Bg0a6ODBg06XJ+7cuVOS1LBhQ5fbHT9+XLm5ubrtttvUqVMn+z/pTKGpU6dO2rBhQ8UGDwAAAAAA4GZuKYfm5eU5XXYlnbm00tMTj3Xr1k2zZ8/WokWLNGzYMElSTk6Oli1bpqZNm9rvaT127JgyMzN1ySWXSJJ69OjhstD00EMPqX379urfv7/HJxcHAAAAAAAob1X+2rqmTZuqW7dumjp1qhISElSvXj0tX75cR48e1eTJk+3rjRs3Tlu3btXevXslSZdccom9sFTUBRdcoM6dO7slfgAAAAAAAHdyWzFpxYoV9lvHbA4fPixJuueee5zWN5lMmjVrlltimzJliqZNm6YvvvhCKSkpiomJ0TvvvKOWLVu65fEBAAAAAAD+K9xWTDp06JAOHTrksu3HH390Wlb4VxMqmq+vr8aNG6dx48YVu878+fMN9WW7cgkAAAAAAOB85JZi0rp169zxMAAAAAAAAKhgbikm1alTxx0PAwAAAAAAgApm9nQAAAAAAAAA+O+gmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDKCYBAAAAAADAMIpJAAAAAAAAMIxiEgAAAAAAAAyjmAQAAAAAAADDvDwdQGWQk5OjN954Q59//rlSU1MVExOjUaNG6dprry1xuzVr1mjVqlXavXu34uPjVbNmTXXo0EEPPviggoOD3RQ9AAAAAACA+1BMkjR+/Hh9/fXXGjJkiOrXr6/ly5fr3nvv1bx589SiRYtit3vqqadUo0YN3XTTTapdu7b27t2rBQsWaP369Vq+fLn8/PzcuBcAAAAAAAAVr8oXk3bt2qUvv/xSY8eO1bBhwyRJvXv3Vs+ePfXqq69q4cKFxW47ffp0tW7d2mFZo0aNNG7cOK1YsUL9+vWr0NgBAAAAAADcrcrPmbR69WpZLBYNGDDAvszX11d9+/bVjh07dPz48WK3LVpIkqTOnTtLkvbv31/+wQIAAAAAAHhYlS8mxcbGqn79+goMDHRY3qRJE3t7WcTHx0uSwsLCyidAAAAAAACASqTK3+Z26tQpRUZGOi23LYuLiytTf++9954sFou6du1aLvHl5uY6/G0ymeTl5SWr1aq8vDyn9b29vSVJeXl5slqtDm0Wi0Vms1n5+fkqKCgoU79eXl4ymUwu+zWbzbJYLCooKFB+fn6xMRXdl4rs91z2taz92tazxVjex9AWb3ExeeIY2votr2NYdF/P5hja+i3pGBbu11X/OH8Ufn49nSOM9ltVc4Stb9v/K0uOMNpvebwHlnQMPfUeWNp5BDn0/JaXl6fc3NxKkSPK0m9VzRFF82hp/bojR/BZw9gxxPnLlkclz+eIsvZrVJUvJmVlZcnHx8dpua+vr73dqBUrVmjp0qUaPny46tevf86xWa1WnTp1ymGZv7+/wsLClJ+f79QmSbVr15YkJScnKycnx6EtNDRUAQEBysrKUkpKikObr6+vIiIiXD6mJEVFRclisSg1NdXpmAQHByswMFDZ2dlKSkpyaPP29rYX5uLj451ePJGRkfL29lZaWpoyMjIc2gIDAxUcHKzc3FwlJCQ4tFksFkVFRUmSEhMTnV4gERER8vX1VXp6utLS0hzaAgICFBoaqry8PKd9NZlMqlWrlqQzx7DoiyssLEz+/v7KzMxUamqqpH9fgGlpaQoKClJBQYHLY1izZk2ZTCalpKQoOzvboS0kJETVqlVTVlaWkpOTHdp8fHxUvXp1SXLZb40aNeTl5aXTp08rMzPToS0oKEhBQUHKyclRYmKiQ5uXl5dq1KghSUpISHBKQNWrV5ePj4/S0tKUnp7u0FatWjWFhISUegyTkpKc3ijDw8Pl5+enjIwMnT592qHNz89P4eHhxR7Dws9NSePbyDEsOlZxfimc4zydI2xKG99VNUfYYkpOTlZ6enqlyRGFlfQeaPQYlvYeWNIxtF31bGM2m1WzZk1JZc+z5XUeQQ49vyUlJenUqVOVIkdU1vOIwjydI2zx2vJoZcgRfNYo/Tyi6LHH+cWWRyXP54iynEfk5+fLYrEY2scqX0zy8/NzSoSS7CfyRn+Rbfv27Zo4caLatm2r0aNHl0tsJpPJ6aopk8kk6UyCc3VFlU1oaKjLbwukM/tUtIBm69fVY0pnBpx0JpkHBQW5bPP19S0xJtubcGG2b9MDAwNVrVo1l/0WfpNwJTw83GmZbV+rVasmf39/hzbbvnp5eZV6DIvr19/f315wzMjIUHx8vP1WSbPZ7LJf2+OGhIS4rEhLZ56b4p5zSS77tcUUFBTkdLumrV8fH58S9zUiIqLYfgMDAxUQEOCy39KOoavbPW39BgQEOL2+bPta3DG0KW18GzmG3Ip6fgsJCbH/39M5omi/5Ih/hYWFydfXV/Hx8fYPIZUlR7jan5LeA0s7hqW9B7o7z57reQQ59PwWFhamyMjISpEjiuuXHPHvMQwNDXXIo4V5KkfwWaP08V10P3F+seVRyfM5oix5tmhhtSRVvpgUGRmpkydPOi23VRFtlcCS7NmzRw888IAuu+wyTZ8+3f6klgfb5WdFmUymYtsklRiDxWIpttp4Lv2azWb7oHXFE/2ey74a7de2nu1vjmHF93u2+1q43/J8naLyKfz8VpXxXVpMlTVH2NoL//9c+y2PHFGe/Upnfww99dyUdh5BDj2/eXl5OYwPziMqtl/p3HJEcXn0XPrls4axfitqX/HfVzSP2pYVpzKeR5Smyk/A3aBBAx08eNDp8sSdO3dKkho2bFji9ocPH9bw4cMVHh6u9957z6niDQAAAAAAcD6p8sWkbt26KT8/X4sWLbIvy8nJ0bJly9S0aVP7Pa3Hjh3T/v37HbY9deqU7r77bplMJn3wwQcuL4EEAAAAAAA4n1T5a+uaNm2qbt26aerUqUpISFC9evW0fPlyHT16VJMnT7avN27cOG3dulV79+61Lxs+fLiOHDmi4cOH6+eff9bPP/9sb6tevbquvfZat+4LAAAAAABARavyxSRJmjJliqZNm6YvvvhCKSkpiomJ0TvvvKOWLVuWuN2ePXskSe+//75TW6tWrSgmAQAAAACA8w7FJJ35ZYBx48Zp3Lhxxa4zf/58p2WFr1ICAAAAAACoCqr8nEkAAAAAAAAwjmISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikmScnJy9Morr6ht27Zq0qSJ+vXrpw0bNhja9uTJkxo5cqRatGih5s2b64EHHtCRI0cqOGIAAAAAAADPoJgkafz48Zo7d6569eqliRMnymKx6N5779X27dtL3C49PV1DhgzRtm3bdN999+mRRx5RbGysBg0apKSkJDdFDwAAAAAA4D5eng7A03bt2qUvv/xSY8eO1bBhwyRJvXv3Vs+ePfXqq69q4cKFxW778ccf6+DBg1qyZImaNGkiSWrXrp169eqlOXPmaMyYMW7ZBwAAAAAAAHep8lcmrV69WhaLRQMGDLAv8/X1Vd++fbVjxw4dP3682G2//vprNW7c2F5IkqRLLrlEV199tb766qsKjRsAAAAAAMATqnwxKTY2VvXr11dgYKDDcluBKDY21uV2BQUF2rt3rxo1auTU1rhxYx0+fFhpaWnlHzAAAAAAAIAHVfnb3E6dOqXIyEin5bZlcXFxLrdLTk5WTk5OqdsWLVIZlZubK6vVqt27d5/V9pVBXl6e8vPzZTKZJElWq9VpnZLabO0ltVXEtmXt12q1Ki8vT7///rvMZnO59VtR8Z7rthaLRV5e//3UUVBQoM8++0zZYSb9/N/fHfy/nGjps8+sKigo+E/nT+nfHGrzX8kRZY2pcA61La9s+1re/Z4PeZQcen46n3Ko5DqPSpU/R5S13+LyqCdjqsh+z4ccKpFHz1f/9Tyak5Njfz2WpsoP26ysLPn4+Dgt9/X1tbe7kp2dLUklbmtb52wYfQIrMy8vr/Mi0eP85Ovrq4svvtjTYaCc+UgKDPN0FOWDHIrKjBx6fjqfcqhEHkXlRh49P/3X86jJZKKYZJSfn59ycnKcltsKQX5+fi63sxWMStrWts7ZaNas2VlvCwAAAAAAUFGq/JxJkZGROnXqlNNy27IaNWq43C40NFQ+Pj5ntS0AAAAAAMB/VZUvJjVo0EAHDx50mix7586dkqSGDRu63M5sNis6Olq//fabU9uuXbtUt27ds54vCQAAAAAAoLKq8sWkbt26KT8/X4sWLbIvy8nJ0bJly9S0aVPVqlVLknTs2DHt37/fYduuXbtq9+7dDhNrHThwQJs3b1a3bt3cswMAAAAAAABuZLIWN2V+FTJy5EitXbtWd955p+rVq6fly5dr9+7dmjt3rlq2bClJGjx4sLZu3aq9e/fat0tLS1OfPn2Unp6uu+++W15eXpo7d67y8/P1+eefKzw83FO7BAAAAAAAUCEoJunMhNnTpk3TihUrlJKSopiYGI0cOVLt2rWzr+OqmCRJJ06c0AsvvKANGzaooKBArVu31oQJE1SvXj137wYAAAAAAECFo5gEAAAAAAAAw6r8nEkAAAAAAAAwjmISAAAAAAAADKOYBAAAAAAAAMMoJgEAAAAAAMAwikkAAAAAAAAwjGISAAAAAAAADKOYBAAAAAAAAMMoJqHKs1qtDn/n5eV5KBLAtcJj1Gq1OozRouMX8LSCggJPhwCUKD8/39MhACVijKIyKygocHivZ7xWXRSTUOWZTCbl5ubq9OnTysvLk5eXlyTpt99+o7CESsFkMiknJ0c5OTkymUz2Mbp3716ZTCYPRwecKcLn5uZKkszmM6cWR44c8WRIgIP8/HxlZmZKkiwWiyRp//79ngwJcJCcnKzMzEwVFBTIYrHo2LFjOnTokKfDAuwSExMlnXmfN5vNOnz4sLKysuw5FVUPxSRUeVarVV999ZUmTZqkkydPSpIGDBigSZMmKTU11cPRAWe+Afrqq6/08MMPKysrS5LUv39/DRs2TMnJyZ4NDlVeXl6eVq5cqZkzZ9q/qRw2bJheeuklpaWleTg64MwYXbZsmT766COlpKRIOjNGP/zwQ97nUSmkpqZq1qxZmjlzpsxms/7880917NhRq1atshfqAU9KTk7WrFmz9L///U+SdPjwYXXp0kWvvPKKhyODJ3l5OgDA06xWq0JDQ7V27VodOXJEBQUFOnr0qP73v/8pMDDQ0+EBMpvN8vb21rZt23TjjTeqdu3aiouL0xNPPKGAgABPh4cqzmKx6K+//tLcuXMVFxenf/75R/v27dPzzz8vPz8/T4cHyMvLSydPntSbb76ppKQk7dq1S3v27NHtt98uf39/T4cHyMvLS9WqVdOMGTMUFxenb7/9Vtdee606deokb29vT4cHyMvLS15eXlq8eLHi4uK0fft2dejQQX369PF0aPAgk5UJNwBJ0tq1azVixAj5+Pjo8ccfV//+/eXj4yOr1cqtRKgUlixZoqefflpms1mTJk1S7969PR0SYDd27FitXr3aPj579uzp6ZAAB88++6yWLFkib29vTZw4UX379pUk3udRKeTl5emZZ57R0qVLdcEFF2jKlClq3ry5JMYoKofs7Gw9+eSTWrFihaKiorRw4ULVqlXL02HBg7jNDfh/R48eVbVq1WSxWLRy5UodP36cN29UCraJDePi4hQeHi5vb29Nnz5dp0+flsSk8fAs2y0YWVlZys/Pl8lk0g8//GC/JZOJOeFptu9NMzIylJeXp8zMTO3du1fx8fGSxPs8KoX8/HydOnVKkZGROnr0qL766iv7+zxjFJ5WUFBgv8qzTp06OnnypKZOnWpv572+auLKJFRZRQtFBw4cUHp6ug4ePKgXX3xRF154oSZNmqRLL73Ug1GiKis6Rvft26fMzEzt2rVLM2bMUGBgoJYsWaLw8HDl5uZyKTw8atu2bUpPT9cXX3yh9evX64YbbtDEiRMVFBSk/Px8JuiE2xXNoXv37lVSUpJWrFihTz/9VHfddZfuvPNOvllHpZCXl6e//vpLeXl5+uabbzRr1izdcccdevjhhxUaGurp8ABJ0i+//GL/4n3+/Pnq2bOnXn31VUlyOhflS/nzH3MmoUoq/KttaWlpCgwM1MUXXyxJio6OlsVi0fPPP68nn3zSoaB0+vRppaamqkaNGnxwR4UqPEZtb86XXXaZJKlJkyYym81644031K9fPy1evFgRERGSzkzimZ6ezocjVKiixSGr1aqWLVtKktq3b6/HHntM33zzjSTpiSeeUHBwsKQzV4ZkZWUpPDzc/UGjSnFVwIyJiZEktWnTRhaLRXPnzpUkDRkyRLVr15Z0ZoympaWpRo0abo0XVY9tjNp+rTUwMFANGjSQJNWsWVOSNGvWLJlMJj344IMKCwuTJPuPxURFRXkmcFQZhcdofn6+/P397bde1qxZU1arVQsWLJAkvfrqq/L29pbVatWxY8cUGRkpHx8fT4YPN6CYhCrHdpmmJL344ovas2ePwsPDdcMNN+j6669XQECA2rdvL5PJpOeee85eUAoKCtLnn3+u5cuXa9asWapbt66H9wTnq8JjdNKkSfafrx42bJiuuOIKhYWFqX///jKZTJo2bZr69++vJUuWyGKxaOHChXrjjTe0du1a1apVi2+EUO4Kf0ifOXOmEhMTFRAQoKFDhyo8PFwmk0kvvviiJkyYoLVr18pkMunZZ5+VJC1evFjr1q3TG2+8obCwMMYnKkThMfruu+/q6NGjqlevnq655ho1bNhQkvTcc8/JZDJp7ty5slqtGjZsmEJCQvTJJ5/ojz/+0NixY/mwjgpTUFAgi8WiAwcOaNq0aTp27Jhatmypa665Ru3atVP16tV1xx13SDpTUDKbzRo6dKjS09M1efJkRUREaPLkyXxYR4UpPEanTJmihIQExcTEaODAgYqOjlZUVJSGDx8uk8mk+fPny2Kx6OWXX9Zff/2l5557Tnl5efr4448lcZvm+Yzb3FBl3X///dq0aZMuu+wynThxQnl5eerZs6dGjRqlwMBApaen68cff9SkSZOUm5urevXq6Y8//tDdd9+tMWPGeDp8VAH333+/tm7dqvr16ys9PV0nTpzQvffeq1tuuUW1atVSXl6eli5dqjfffFPp6elq0KCBdu/erWHDhmn06NGeDh/nuXvvvVebN29WYGCgMjMzFRQUpFdeeUXNmjWTj4+PcnJy9MQTT+i7775TvXr1dMkll2jFihUaNWqU7r//fk+Hjyrg/vvv108//aSgoCBlZWUpKChIzz//vNq3b29f5+mnn9aiRYvUsmVLhYeH6+uvv9bIkSP1wAMPeDByVAWHDh3SwIED5efnp6ioKO3du1e1a9fW7bffbi8kxcXF6eOPP9Z7772nWrVqydvbWydOnND8+fPVqFEjD+8BzndHjhxR3759FRQUpOrVq+vQoUMKCgrSiBEjdMMNN8jPz08nTpzQ7Nmz9eGHH+qCCy6Qj4+P4uPj9f7776tJkyae3gVUMIpJqDIKf1N59OhRjRgxQvfcc486duwob29vTZgwQZs3b9bVV1+tJ5980v4Bad++fXrjjTdkNpvVuXNnDRgwQNKZir3ZzBz2KD+Fx+jvv/+up556Svfdd5/atGkjf39/TZo0SYsXL9bQoUM1ePBg1a5dW3l5efr+++/11VdfKS4uTr169VL//v0lMUZRvgrfevn1119r6tSpGjlypJo3b66///5bM2fO1L59+/Tiiy+qbdu29oLS1KlTtWHDBmVlZWnw4MEaMmSIJOZSQPkrPEZ/+OEHPfPMMxo5cqRuuOEGbdy4UQsWLNDmzZv15ptvqnPnzvbtpk6dqpUrV8rHx0e33Xab7rzzTkmMUZQ/2/t8QUGBVq5cqeXLl+vRRx9Vo0aN9Mcff2jSpEk6efKkBg0apKFDh0qSkpKS9OOPP2rx4sWKjIzUww8/rEsuucTDe4LzlW2M5ubmasmSJVqzZo0mTJigiy66SPHx8br//vsVFxenxx57TD179pSfn5/i4uK0bt06ff/997JYLHr00UcZo1UExSRUOVOmTFFaWpp27NihefPm2efuyMnJ0Ysvvqh169bp2muv1cSJExUYGCjpzAllWlqagoKCJPEhHRXrzTffVFZWlr7//nstWLDAYeLNyZMna/78+Q4FJZvU1FT73DSMUVSUFStWKCUlRT/88IPeeOMN+fv7q6CgQEePHtUzzzyj3377TS+88ILatWsnHx8fFRQUKD09XRkZGfbbhhifqEjz5s1TSEiIfvzxR02ePFl+fn6SpF27dumNN97Qhg0bnApKcXFxMpvNql69uiTGKCrOwYMHNWvWLB07dkz16tWz3wYsSX/++adeeOEFHT58WIMHD7YXlKQzv5hpMpnk6+vribBRhRw4cEDLli3TgQMHFBkZ6TBGc3Nz1b9/fx07dkyPPfaYevXqJT8/P3sRKjMzU/7+/h6MHu7EuySqlJ9//lmzZ8/WTz/9pNq1azsUknx8fDRhwgR16tRJGzZs0Isvvqi0tDRJZ+71tRWSrFYrJ5ioMHv37tWbb76pjz76SGFhYfZCUk5OjiRp4sSJGjRokObMmaOPP/5Yx48ft29rKyQxRlFRvvrqKz3++OOaOnWqIiIi7CeMZrNZdevW1TPPPKNGjRrpiSee0IYNG5STkyOz2aygoCB7IYnxiYq0fPlyvfjii3rmmWcUEBAgPz8/e/5s0qSJRo4cqWuvvVYPP/ywvv32W/t2NWrUsBeSGKOoSMuWLdOyZcv0999/2yeFz8nJUUFBgaKjo/XEE0+obt26mj9/vubNm2ffzs/Pj0IS3OL777/X+++/ry1btuiCCy6wL8/JyZG3t7cWL16s2rVr69VXX9WqVauUlZVlv7KeQlLVwjslqpSrrrpKU6dOVVpamtavX69Vq1ZJknx8fJSbm2svKN1www1at26dJk6cqNzcXIc+uOQdFcVqtSomJkYffvihAgMDtW3bNn311VeS/h2jkvTkk0/qzjvv1Pvvv69Zs2YpIyPDoR/GKCpK8+bNNWbMGHl7e2vnzp06cuSIQ7utoNS0aVONGTNG3333nVMfjE9UpOuuu0533nmn/Pz89Ouvv9rf24sWlNq3b68HH3xQq1evduqDMYqKNGbMGA0dOlQnT57UnDlzdPjwYftE2raC0sSJE3XRRRdp+vTp9kmMAXe5++67NX78eKWnp+uLL77Qnj17JMmeS20Fpbp16+qJJ57QmjVrPBwxPIViEs5b+fn5Lpf36NFDzz//vIKDg/XWW29p/fr1kiRvb2/7See4ceN0/fXXq23btvL29nZn2KhCio5R2weYVq1aaerUqQoODtasWbO0adMmSf+OUUmaMGGC+vXrp3r16ikgIMC9gaNKKCgocFoWFRWlXr16aejQoTp8+LDefvttnT592mGdunXr6qmnnlJMTIwSExPdFS6qIFdjNCIiQvfee69uvvlm7du3Tw8//LAkORWUHnzwQV155ZU6ceKEW2NG1eJqjErSuHHjNHToUB07dkxTpkzRkSNH7FfD2QpKjz/+uFq3bq1rr73WnSGjiilujN51110aM2aM9u3bp3nz5unvv/+W5FhQ+vjjj9WiRQs1btzYnSGjEmHOJJyXCk/C+eOPPyohIUE+Pj5q2rSp6tSpI+nMvB+TJ09WVFSUxowZY/91l9zcXHl7ezvMl8AknChvRcdoUlKSCgoK1KVLF3txaNOmTXrkkUd04YUX6rHHHtPVV18t6d8xClSUwuNz//79Sk5OVlBQkKKjoyVJ8fHxWrhwod566y3dcsstGjdunP1WYJu0tDT7vHNAeSs8Rg8dOqRTp06pbt268vPzU0hIiOLj4/Xee+9pwYIFuu666/T2229L+ve2dunMOLbd2gaUN9scMidPntTu3bv1zz//6PLLL1fdunVVq1YtSdKkSZO0dOlStWvXTmPHjlXdunXtH+7NZrPDeAXKm22MxsXF6ddff1VSUpKqV6+uTp062deZOXOmZsyYoT59+ujee+/VRRddJEmMTUiimITzUOEi0IgRI7Rt2zalpaUpPz9fMTExuvnmm+0TGq5atUrPPvusatWqpdGjR9sLSoWLRxSSUN6KjtEdO3YoOTlZZrNZtWrV0gMPPKAOHTooJCREmzdv1ogRI5wKSoxRVJTCvyr46KOP6ueff9aJEycUHBysxo0b64UXXlBUVJQSExP1ySefaObMmcUWlCTGJ8pf0TG6ZcsWxcfHKyQkxH4r5mWXXaaEhAS99957mj9/frEFJYkxivJne5/ft2+fHnroISUlJSknJ0c5OTlq3769brnlFnXp0kWS9MILL2jx4sW67rrr9Pjjj9sLSszbhYpkG2N//fWXHnjgAaWlpSkzM1NZWVm6/vrrNWjQILVt21aS9Pbbb+uNN95wKigBFJNw3nrssce0adMmjRgxQldeeaX8/f11++23Kz8/Xy+//LK9cLRq1Sq98MILCg4O1ujRo3XDDTd4OHJUFY899pg2b96sBx54QM2aNZMkjRo1SllZWZo6daquuuoqmUwmbd68WaNGjVKNGjX02GOP6brrrvNw5KgKbIXOgQMHqlmzZoqNjdW0adN02WWX6d1331WNGjWUkJCghQsX6t1339WNN96oCRMm2CeCBypa4TF6zTXXaNOmTZozZ468vb312WefKSoqSklJSXr33Xf1ySefqFWrVnrvvfc8HTaqiGPHjun222/XRRddpDvuuEPNmjXTpk2b9Nhjj6l169aaNGmS6tatK+lMQWnZsmVq0qSJnnvuOYdJj4GKYhuj9erV05AhQ3TJJZfozz//1COPPKIuXbpo4sSJ9h/PePvtt/Xmm2+qU6dOevTRR1WvXj0PR4/KwMvTAQAVITY2Vrt27dI999yjm266SQEBAfrzzz+VmpqqW2+9VQ0aNLB/E9mjRw/l5+dr3LhxyszM9HToqCL27NmjX375RcOHD9fNN9+swMBAbd26VXFxcerevbvq1q0rk8kkq9WqNm3a6PXXX9fQoUOVmprq6dBRBWzYsEE7duzQyJEj1b17dwUGBtrn+IqJibFfxREREaH+/fsrPz9fb731lm666Sb71XNARdq4caN27typESNG6MYbb1RgYKAKCgr09ttvq2vXrvb8GRYWpnvvvVd5eXlasGCBvv32W3Xs2NHT4eM8Zju/XLt2rfz8/PTggw+qZcuWkqTjx4/Ly8tLffr0UWRkpP0quyeeeELp6en64Ycf7LdvAhXtm2++kZeXlx5++GH7GF2+fLm8vLx03XXXOXw59MADDygrK0sfffSRnnzySU+FjEqGbIXzQtHLgePj43Xs2DE1b95cAQEB2rx5s+677z516dJFDzzwgL3KfuTIEdWtW1e9evVS48aNVb9+fQ/tAc53RcfoyZMnFRcXp+uuu06BgYHatGmT7r//ft1www0aNWqUfYzm5OTI19dXV199tb7//nvVrFnTU7uA81jR23wOHTqk7Oxsde3a1T4+H3nkEXXv3l2jRo1SZGSkfd3IyEgNGDBA119/vZo0aeKJ8FEFHThwQGlpaercubMCAwO1ceNGPfjgg+ratatGjBihGjVqSJJSU1MVHh6uBx54QN26dVOLFi08HDnOZ4Vz6V9//SVvb2/7h/SXX35ZH374oZ5++mndcMMN8vPzU0ZGhk6fPq2oqChNnjyZebxQYWw3IxV+r9+zZ49CQkLsY/SVV17R3Llz9cwzz6h79+7y9/dXdna2fH19JUmjR4/WXXfdpbCwMPfvAColbsbFf5ZtgkJX95UXFBTIYrEoMjJSsbGxuu+++3TDDTdo3Lhx9g/pixYt0syZM5WSkiJJ9ss1i/tVA6CsCv9am22MpqWlSZKqVaumgoIC5eTk6LfffrMXksaOHWsfo3PmzNGDDz5o78dWSGKM4lzYTigL3+VuO7nMzs6WdObXWsxms7y9vbV9+3Y98MAD6ty5sx5//HH7OJw3b56effZZSWd+5c1WSGJ84lwVnYGh8Jiy/SKbl5eXQkJCFBwcrE2bNunBBx9U586dNW7cOPsY/fTTT/X+++8rMzNTERER9kISYxTlxfYLq7ZxWfjXLW3zeknS66+/rvnz5+vpp5/WTTfdpGrVqkmSnnzySa1bt055eXmSRCEJ5S4rK8v+f5PJ5PArq8HBwfbz0mnTpmnevHl6+umn1atXL/sYHT58uObOnWvfhkISCqOYhP+kvLw8LVmyREuXLrV/SO/du7f9g81VV12lCy+8UPfcc49uu+029ejRQ6NHj7Z/U3nkyBGtW7fOXkiS/v0wxYSHKA+5ubn68ssvtWDBAvuye++9V1OmTFFOTo5q1qypyy67TM8//7wGDx6sbt266fHHH7eP0cOHD2vHjh3y8vJy+ul1xijOhclkUk5OjtauXastW7bYlz/xxBNauXKlrFaratSooZycHL366qu655571KVLF4fxuW/fPq1du1ZWq9XhRFVifOLc2cbomjVrtGfPHvuYGj16tDZs2CBJuuyyy3T8+HG9/PLLeuihh9SpUyeHMfrXX3/po48+UlZWlsOHeokxivJx8uRJvfnmm/rtt9/k4+OjP/74Q61atdKPP/4oSerevbsOHz6s/v376/3339ezzz6r7t27y8/PT5L0008/6ddff1Vubi5jEhXixIkTWrBggdauXSuTyaR9+/apf//++vLLLyVJTZs2VWZmpu644w699957mjRpknr06GEfoz/88IMSEhJktVopwsMlMhf+k9LT0/XXX3/pySef1Ny5c3X//ffr1KlTuuqqq5Sfn6+AgADddNNNio+PV3BwsB566CHVqVNH0pnJ5pYtW6adO3eqZ8+eCgkJ8fDe4HyUm5urTZs26bXXXtObb76pu+++W7t371b79u3l5eWlCy64QN26ddPPP/+siIgIDRgwwH5F0smTJ7V8+XJt3bpVvXr1UmhoqGd3Bued06dPa/bs2XrmmWe0ceNG3X333Vq9erVq1aolk8mk6667Tp06ddJHH32kSy+9VPfff799fMbFxWnlypU6ePCg2rVrZz/pBMpTUlKSlixZopEjR2rPnj0aNmyY1q5dK4vFovz8fF111VXq37+/FixYoIsvvthhotiTJ0/qyy+/1KlTp9SmTRt+vhoVIiUlRT/99JP69eunVatWaejQoWrZsqX9NuBLLrlEHTp00N69e9W2bVvdeuut9l+83LVrl+bMmaOAgAB16dKFYhIqRGpqqj7//HO99NJLmjdvngYMGKD69esrJiZGktS5c2dddtll+vnnn9WxY0f7bcOStHv3bs2bN08Wi0XdunVjjMIlfs0N/1kHDhzQ66+/rm+++UbVqlXTrFmz1LRpU/vEhVlZWZoyZYqWL1+umjVr6s4771Rqaqp27typ9evXa+TIkbrnnnsk8bPAqBiJiYkaOXKkdu3aJYvFoldffdVp4tcXX3xR8+bNU6NGjdSvXz9lZWVpx44dWrt2LWMUFSo2NlaDBw+2X7XxwgsvqFOnTvb2kydP6tlnn9UPP/ygO+64Q927d1dSUpK+++47ffrppxozZoyGDRvmqfBxnsvJydGOHTs0ceJEpaSkyGw264UXXrAX5CVp586dmjVrlr777jvdc889uvrqq5WVlaWvv/5aK1as0OjRoxmjqFAbNmzQU089pRMnTqhJkyZ65513FBwcbP/gvXfvXr300kvatGmTOnXqpOuuu04HDx7Uli1bdPToUc2fP1/R0dEe3gucz7Zs2aLHHntMiYmJiomJ0VtvvaWaNWvapwnJzMzUoEGDtG/fPl1zzTW6+eabtWvXLv3yyy86ePAgYxQlopiE/7RHHnlE69atU35+vkaPHq377rtP0pmTUB8fH2VnZ2vJkiVasWKF/vzzT0nS5Zdfrptvvln9+/eX5HrOJeBc5eXlycvLS3feead+/vln+fr6atCgQRo9erSkf8eoJM2ePVurVq3S77//LovFokaNGumWW25hjKLCFP41ywMHDqhOnTqaMGGCOnfu7NCekJCgV155RV9++aV9bpD69evrjjvu0ODBgyUxPlGx+vXrp927d6t27dp69dVX1bx5c4f2P/74Q0uXLtXHH39sX3bRRRfp9ttvZ4yiwhTOkX369FFSUpLMZrM++ugjNWrUSDk5OfLy8pLZbNaBAwf0xRdfaMWKFUpMTFRoaKguv/xyjRkzRpdccomndwXnKdsYzczMVMuWLeXl5aXw8HBNmDBBN9xwg6R/z0UzMzP14osvasuWLTp06JCqV6+uxo0b67HHHmOMokQUk/CfZEuQixYtktls1rp16/T999/rscce0/DhwyX9myCtVqvy8/MVGxursLAw+fv7KyIiQhInmKh4n332mfLz8/Xpp59q//79uv322zVy5EhJcviFjNTUVMXHx8vX11f+/v4KDw+XxBhFxcnLy9M777wjs9ms2bNnq06dOho9erSuv/56SY5j748//lBSUpICAwMVHh6uunXrOq0DlLdTp05pyZIlKigo0LJly1StWjVNnjxZjRs3drpS888//1RcXJz8/PwUFRXFGIVbnDx50j5/3Pz58xUXF6d58+apSZMmysvLk8lkst+amZmZqYMHD6pWrVry9/dXQECAp8NHFfHhhx9KOvPlpZ+fn0aPHq2uXbtK+vdcND8/X9nZ2fr7779Vt25dWSwW+yTcQHEoJuE/Iz8/32kSTZu9e/fqjTfe0LfffutQUJKkjIwMhzdsWyGK24ZQ3koaoydPntSYMWP0119/ORSUrFarsrOzVVBQYB+njFFUhJLG565du3T33Xerdu3aevTRR9W+fXtJsk+6WVBQIG9vb4dtGJ8ob67GaG5urnJzc/Xrr7/qqaeekr+/v1544QWHglLhKz0LY4yivBUeo0ULlWvWrNFrr72muLg4zZ8/X40aNbK3paSkMEcn3KKk9/q1a9dq0qRJ8vPz05gxY9SlSxf7NqdPn2aOTpQZxST8JxROjAsWLFBCQoLq16+vdu3a2a/g+P333/XWW29p3bp19oJSSkqK5s+fr8OHD2vKlCme3AWc5wqP0blz5yo7O1uBgYG644477Ov8888/GjdunPbv36/bbrtNI0eOVFZWlhYtWqRdu3Zp8uTJTGaMClF4fK5atUoWi0WRkZEOtwz98ssvuvfeex0KSpmZmVq5cqVycnLUv39/p4ISUF4Kj9HvvvtOaWlpat68ucLCwhQQEKCsrCxt3bpVzz77rPz9/fXiiy+qcePGysjI0PLly1W9enV16tTJPp8SUN5sY/TIkSNauXKlUlJS1KVLF11yySX2QtHq1av1+uuvKy4uTh9//LEaNmyoAwcO/B979xlWxbW/ffxLr4oUAQERRQRrFEvsPXZjiRo7drGC2HuiYu8Vu7Fh711jV6zYu4gCKiIivezN3vO84NmTjZqc8z+hJLA+byK7XWuuc5+ZWb9ZhRkzZtC2bVt+/PHHXD4KIS/Tzui+ffvQ09PDw8NDnsIOGUXPmTNnYmJiwsiRI2ncuDGvX78mICAAd3d3evfunYtHIPzbiGKS8K/Sv39/Ll++jIGBAQqFgtq1azNgwACqVasGZEzFWLlyJWfOnKFFixYYGRlx4MABevfuzZgxY3K59UJ+0L9/f4KCgtDX1yctLY2KFSsyc+ZMnJ2d0dPTIyIignHjxvH8+XMqV65MkSJF2L59O35+fgwYMCC3my/kcd7e3ly5cgWlUom1tTWNGjVi2rRp8vuagpKdnR3NmzdHqVSyevVqpk6dSpcuXXKx5UJ+4e3tzcWLF1Gr1RQqVIgff/yR/v37U7hwYdLS0rh+/Tq//vorpqamtG/fnujoaNavX8+4cePo1atXbjdfyONCQkLo1q0bKSkpqNVqJEmiR48edOzYkRIlSgAZBaXFixcTGRlJ+/btef78Obdv32bPnj2ULVs2l49AyOs0SyooFAp0dHRITk7Gy8sLb29vLC0tgYyC0uzZs0lPT6dOnTq8e/eOu3fvsmvXLtzc3HL5CIR/E1FMEv7RNIsYAxw/fpyFCxfi6+tLqVKliIiIYNSoURQtWpQRI0bI0zKePn3Krl27OHXqFAYGBnh5eck3mGLIu5DVtDO6e/du1qxZw7Bhw/Dw8ODp06csXbpUnpZRunRp9PX1effuHXPnziU4OBi1Wk3fvn3lJ0Eio0JW0h7tsWTJEvbt20ffvn1xc3Pj0KFDnDx5kqpVq7J69Wr5Ow8fPsTb25u4uDgMDAzw9vYWhU4h22hnNCAggMDAQPr06YOnpye//fYbN27coGLFikycOBE7OzvS0tIIDg5m5syZvHjxAnNzcwYOHCjvfCkIWU0znU2hUDBt2jQ+fPhA//79cXBwYP/+/axYsYLWrVvTv39/ederc+fOERgYyKNHj7C1tWXOnDliRywh22jOowqFgvHjxxMbG8ugQYMwNzfnzJkzrF69mubNmzNy5Ejs7OwAOH/+PGvWrCEsLAwrKyvmzZuHu7t7Lh+J8G8jiknCv8KFCxe4fPky4eHhzJ8/H3NzcwBevHhBly5dvlrnIyEhgeTkZBISEihZsiQgFuEUsteNGze4d+8eDx8+ZNasWZiamqJUKnny5AljxoxBX1+f2bNn4+Hhgb6+vpzRpKQk+WmmyKiQXcLDw/n999/5+PEjQ4cOxcTEhJiYGA4cOMCiRYuoUaMGa9askT//8eNHQkNDMTY2pkKFCoDIp5C97t69y8mTJ9HT02PYsGHy5gQLFizg0KFDVKhQgUmTJmFnZyevNXfjxg0sLS0pX748IDIqZJ+IiAgeP37Mhg0baNmypbxTIGQsvzBjxoyvCkrx8fF8/vyZAgUKyEsyCEJ2CQ8P5/Pnz6xevZratWvLo4mTk5M5evQo06ZNo3nz5owaNQpbW1sgYz1PAAMDA5FR4X8iiknCP97GjRuZM2cOJUuWpE2bNvTv3x+1Wo1KpcLAwCBTQWnUqFHUrVv3q98Qoz2E7KS5kbSxsaFDhw74+vpmev/+/ftyQWnOnDmULl36qw6PyKiQXWbOnMnmzZuxtrbGz8+Pn376SR5Rl5CQwO7du79ZUNImOulCdpo8eTKnTp3C2NiY8ePH06xZM1JTU+U15BYuXMjBgwczFZS+JDIqZBelUsnPP//Ms2fPKFq0KGvXrqVo0aKZFn7X3Ae0atUKb29v+UGmIOSEtLQ0+vXrx82bN7G3t2fp0qVUqFBBvrdUKBQcPHjwmwUlQfg7xFVX+Mfr2rUr7du35+XLlxw9epS3b9+iq6uLgYEB6enpuLm5sWPHDqKiopg1axZnz5796jdEJ13ITjVq1KBbt258/vyZ27dvExMTk+n9ChUqyAvA+/n58fDhw69+Q2RUyC4VKlSgUqVKxMXF8fbtWwB0dXVRq9UUKFCAjh07MmLECG7evEmfPn2++Ruiky5kp4YNG2JiYsKHDx948OABAMbGxigUCiDjvNmmTRsePXrEL7/8QmRk5Fe/ITIqZBcDAwPmzJmDu7s7r1+/JjAwkNTUVAwNDUlPTwege/fuTJo0iSNHjrBgwQJCQ0NzudVCfmJoaIi3tze1a9cmMjJSXhtRc29paGhImzZtmDJlCqdPn+bXX3/l06dPudxqIS8QV17hH+VbA+WMjIyYPHkyP/30E0+fPmXfvn3yCVBfX5/09HRKlizJ5s2bCQ0NJTExMaebLeQj38qoq6srXbt2pUOHDty6dYs9e/agVCozfaZChQr4+/uTmJjIq1evcqq5Qj6jnU+VSgVAq1at6N27NyVKlGDlypVcvnxZ7nhrF5QGDx7M1atXOXPmTK60XcgftDOq6Yg3aNCAuXPnYmNjw65duzh48CCQ0QHSLig1a9aMa9eu8fTp05xvuJBvfOs67+bmxoIFC3B1deXw4cOcPXsWpVIp34dCRkFp1KhRXLt2DVNT05xutpCPfJlRHR0dqlevTt++falYsSJbtmzh1q1bmT6jKSiNGjWKu3fvyrkVhL9DTHMT/jG0FzKOiYlBqVRmmsOrVCoZM2YMp06dYvDgwXTu3Blra+tM342NjaVQoUK5dQhCHqed0cTERJKSkjAzM5PX8AoNDWXNmjUcOHAAPz8/evXq9dVW6tHR0djY2OR424W8T3shY4CUlBRMTEzkv0+fPs3SpUuJiIhg+fLl1KpVC7VaDWSM6oiPjyc8PFzsNiRkmy8zmpiYKJ8/AYKCghg3bhzGxsYMHTqU1q1bA2SaThQcHIynp2fONlzINzQZ1axpqFAosLW1la/lISEheHt7o1KpGD16NI0bN5ZHymvuD+Li4rCwsMjNwxDyME1GU1NTSU1NRaVSYWRkhLm5Oenp6QQHBzN79myioqKYN28eNWrUyPR9hUJBWloaBQoUyKUjEPISUUwS/hG0bzBnzJhBcHAw7969o0CBAvTq1YuGDRtSpEgR0tPTGT169DcLSpoo6+joiLUThCynndHp06dz+/ZtQkJCcHV1pWHDhgwfPhyAsLAwVq1a9ZcFJRDrewhZSzufixcv5sGDB4SGhlK7dm2qV69OixYtADh58iTLly//qqAkSVKmTr7Ip5DVtDO6dOlS7t27x7t376hSpQpNmzalWrVqGBoacvnyZSZOnPiXBSUQGRWyniajr169YtasWYSEhJCamoqDgwPDhw/nu+++w8LC4j8WlMQaiEJ20c6ov78/ISEhJCQk4ObmRr9+/WjcuDGSJHHr1i1mzZpFVFQU8+fPp3r16rnddCGPEsUk4R/F29ubO3fuUKtWLSwtLXn48CEPHjygWbNmDBgwAA8PD5RKJWPHjuX333+nX79+dO7cmcKFC+d204V8wtvbm3v37lG9enWcnJy4fPkyT5484YcffmDatGlYWlrKI5QOHz7MsGHD6N27d6ZOkCBkl4EDB3Lv3j1cXFwoVKgQN27cQEdHh+7duzNixAgATp06xbJly3j//j2LFi2iTp06udxqIa/T7lwPHDiQu3fv4urqioGBAffv38fQ0JAuXbowcOBATExMuHLlChMmTMDMzIwBAwbQtm3b3D0AId94/fo1nTt3xt7eHk9PTxQKBTdv3iQqKoqBAwfSoUMHbGxsCAkJYdCgQQAMGTKEFi1afPPBkSBkNU1GHRwc8PT0RKVScfHiRd6+fYufnx8DBgxApVJx69Yt5syZQ0xMDNOnTxfXeiF7SILwD7Fnzx6patWq0r59+6SUlBRJkiQpOjpa2rBhg+Th4SGNGjVKio6OliRJklJTU6Vhw4ZJ7u7u0r1793Kz2UI+sn//fqlSpUrS3r17pcTEREmSJCkiIkIKCAiQvvvuO2nYsGHyZ0NDQ6XRo0dL7u7u0oMHD3KryUI+sn79eqlSpUrSwYMHpYSEBEmSJOnevXtS3759JQ8PD2nRokXyZ8+cOSM1a9ZMcnd3l96+fSup1epcarWQn6xZs0aqXLmytH//fiktLU2SJEl6//691KFDB6lixYrSsmXL5NevXr0q1ahRQ6pevboUEhKSm80W8gG1Wi2lpaVJI0aMkFq1aiXdv39ffi88PFzy9fWVypYtK23evFlKT0+XJEmSQkJCpGrVqkmtW7eWz7mCkJ0UCoXk5+cnNWvWLFNG79+/L40aNUpyd3eXtm3bJkmSJKWnp0s3b96UGjVqJDVt2lRKTk7OrWYLeZh+bhezBEEjLCwMtVqNp6envB2wtbU1vXv3RqVSMX/+fGrVqkXbtm0xMjJi/vz5XLt2jQoVKuRyy4X84vXr1+jo6FCnTh3MzMxQq9U4OjrSqVMnlEoly5cvZ/369fTt2xcXFxcGDRpEmzZtKFeuXG43XcgHnjx5gq2tLU2aNMHY2BiVSkWFChUYO3Ys/v7+BAYGUrFiRerXr0+jRo1QKpUoFAocHBxyu+lCPvHkyRPs7Oxo1qwZhoaGKJVK7O3t2bhxI15eXgQGBlKnTh2+++47atSowZw5c4iMjKREiRK53XQhj9PR0cHQ0JBnz57h6OhI+fLl5fecnJz49ddfSU1NZeXKlTRp0gQ7OztKlCjBzp070dHRybT2lyBkF7VazbNnzyhZsmSmjJYvXx5vb28SEhKYNWsW5cuXp3z58nh6ejJ37lwKFy6caQ1FQcgqYrK5kCs0i77CH2sdJSYmIkmSvCCc9i4DLVq0oFixYuzatUv+nKGhIXXr1v3q9wQhK3wrUzo6OiQlJcm7ZGlYWlrSunVrHBwcuH79upzd4sWLU6tWrT/9PUH4X0lfzFBPT08nOTkZpVIpryOjmVbk5ubG0KFDSU5OlrddB2jWrBk//vgjIPIpZD3tjKrVatLS0vj48SM6OjpIkoRKpcLAwACVSoW5uTnz5s0jLi5O3k1QkiTq1KlDx44d5d8QhKyknVFJkuQFjbXX4tLkztzcnM6dO/P582d5t0FJknBxcaFYsWI523Ah3/jyWq/JZlxcnPya5p7U1dWV9u3bo1QqefLkifx5T09PihYtmkMtFvIbUUwScpxKpZJPhjExMfLr9erVQ6FQsHz5cgD09fXlLYEdHBwoVqwYiYmJGBgYfLWwoViEU8hK2hmNioqSX3dzcwNgy5YtJCYmoqurKxeOihUrRrly5Xj16hWpqalf/abIqJBVVCqVfA5MTEwEMs6Xzs7OvH37lqtXryJJErq6uqhUKiRJokqVKri4uHD9+nXUavVXHXORTyEraWdU0zk3MjKievXqvHz5ksePH6OnpycvJitJEk5OTjg5OfH48WPgzztRgpAVNBlNTEyUH1IaGxvTpEkTLl68yIkTJ4CM3GmK9FWrVsXY2JikpCQAsci2kK20MxofHw9knBcrVKjA/fv3OX78OAB6enpyf6lJkyYYGBjw5s2bXGu3kL+IK7OQo7R3c5k5cybDhw/nwoULAJQrV46aNWty+PBh1qxZAyAvWhwZGUlsbCzOzs7yzkOCkB2+zKi3t7f8FLJFixbUqlWL7du3c/DgQRITE+WtgN+9e8f79+/x8PCQp2kKQlbTzufy5cuZM2cOly9fBqB///64uLiwaNEinj17Jn9WR0eHN2/ekJKSgoeHB7q6uqJjLmQb7YwuW7aMJUuWcOXKFQCaNm1KiRIl8PHxITw8XP6cjo4OHz9+RK1W4+zsLL8mCNlBk9HQ0FD8/PwYO3Ysb9++BaBRo0bY29uzfPlyzp8/DyAvrB0cHIyRkRH29vbA1wVPQcgq2ru2jRo1ij59+hAREYGhoSEDBw7EwMCAtWvXcvHiReCP/tKlS5cwNDSkePHiudl8IR8Rd5NCjpG0tp4eOHAgp0+fplixYri4uABgZWXFuHHjcHJyIiAggPHjxxMSEkJQUBDbt2/n0aNHNGrUCBMTE3GTKWSLLzN66tQpqlatSpkyZeTPLFy4EDc3N+bNm8f8+fN59eoVwcHBBAYG8uTJExo2bCgXmAQhK6nVajmf3t7e8lodms63paUlo0ePJiYmhtGjR3P8+HGSkpIIDQ1l//79fPz4kSpVquTmIQh53JcZ3b17N58+fZI7NiVLlqRv376o1Wq6dOnChQsX+PTpE6GhoezcuZPIyEh5C2txnReyg+Y6HxISQteuXUlNTaVUqVLyNKAqVaowYsQIPn36xKRJk9i4cSMvXrzg+PHjbNy4MdMSCyKjQnbQzmi3bt1ITU2lYcOGODk5ARkj4ZcuXcrr16/x9/cnICCAT58+cezYMTZt2oSZmRk1atTI5aMQ8gsdSZTVhRy2bNkytm3bxoQJE2jcuDGmpqbylAtdXV3evHnDokWLuHTpEklJSejr62NmZkbfvn0ZMGAAkHmbYUHIakuXLiUwMJBJkybRoEEDOaM6OjryukkjR47k0qVL8pQ4zRbW/fv3B0RGhewzY8YMDh8+zNSpU6lTpw4FChRArVajq6tLWloa165dY/78+bx48QJTU1MMDQ1JTk5m6NCh8jlUELKTdkZr165NwYIFSU9PlwvtBw4c4LfffuPJkydYWVmhq6tLYmIigwcPFhkVsl1cXByDBg1CrVYzadIkeZMMpVIpj0I6ffo0Gzdu5N69e6hUKkxMTLCxsWHZsmV4eHjkZvOFfCA+Pp4BAwagq6vLhAkT5Ixqj/y8f/8+o0ePlqe0GRsbY2Njw/Lly0VGhRwjiklCjuvRowc6OjqsWrUKMzOzTO9pTpJxcXHy2h/29vbY29vLT9Q1nSZByC5eXl6o1WqWL1+OhYVFpve0L+TXr1/nzZs3mJubU6RIESpVqgSIjArZJyYmht69e+Pq6sq0adMwNzf/ZuEyJSWFwMBAIiMjKVSoEGXLlqVevXqAyKeQvT5+/Ejfvn3x8PBg+vTpGBkZyRnVzl5kZCRnzpzh0aNH2NnZyTsNgsiokL1evXpFp06dGDBgwFcPKbXPp2/fvuX9+/fcv38fFxcXypYti52dXW42XcgnXr9+Tfv27Rk0aNA3H1Jq7kWjo6N5+fIlISEhFC1aFHd3d5FRIUeJuRhCjlGr1cTFxfH06VNatWqFmZlZpqdA2lOMLCwssLCwyDS9SPMb4gZTyE5xcXE8e/aMpk2bYmFhkenirZ1RgO+//57vv/8+0/dFRoXsFB8fT0hICG3atPmqkKT9bxMTE/r06fPV90U+hewWHx/PmzdvaNGiBUZGRpkK8NqddXt7e7p37/7V90VGhez2+vVrEhMT+e677wBQKBTymjPa51EHBwccHR3F9GAhx717947k5GQ5e9rnUc10YkmSsLGxwcbGRp4eLAg5TVythRyjq6uLpaUlZcuW5fr16yQkJGBgYCAvYKi5eJ8+fVreGvhbvyEI2cnU1BQXFxeCg4OJiIj4Zkf94MGD7N2795vfFxkVspOenh5GRka8ePEChUKRaUSS5t/nz5+XF+X8ksinkN1MTEwwNjbm3bt3QEbmtK/zOjo6XL9+nUuXLgFi1zYh57m5uWFmZsbJkyeBjMWLtZdbAFizZg2hoaG51kYhf7OxsUFPT49jx46RmpoqF5I0O7UC+Pv7i4wKuU5csYUcV61aNd68eUNAQAAJCQny0HeADx8+sGPHDo4ePSpvvSoIOcnAwICGDRvy4sULjh07RmxsLPBHRz0qKorff/+dCxcuyNuyC0JOKVq0KI0bN+bs2bM8fPgQyNwZDwsLY+fOndy/f1/eKlgQcookSdjb29OoUSN2797NhQsXMl3jIWNUyKpVq3j69Km89bUg5KQCBQpQsWJFjh07xuHDh4HMRcybN28SGBjIrVu3cquJQj5XqlQpPD09OXbsGNeuXUOpVAJ/3IsGBwdz6dIlgoKCxK6CQq4SxSQhx2hOdt7e3nh6evLbb7+xbNkyYmJi5IW3AwMDuXfvHvXr1/9qPSVByG6ajA4YMIBmzZqxatUqtm/fzqtXrwAICQlhx44dXLlyhUaNGmFubp6bzRXyGU0+O3fujI2NDT4+Pty8eZPk5GQAwsPDOXToEMHBwbi7u8vTNgQhp+jo6KCrq0uLFi1wdnZm0qRJXLhwQX6q/v79e44ePcrTp08pVqxYpmnDgpATJEmiUKFCjBo1CqVSyZIlS9i2bZv83s2bN1mzZg0GBgbUqlUrl1sr5EcqlQrI2MjAzMyMWbNmcezYMfkh+82bN1m5ciVqtZr69euLgryQq8QC3MLf8uXCr9pzer9F875KpaJ///7cuHEDa2trXFxciIyMJDIykiFDhohd24Qs83/NqEZkZCTz5s3j6NGj2NjYULx4cd69e8fHjx8z7YolMirkNLVazZkzZ1i2bBkRERF4enpia2vLixcvePLkCb6+vvKCnYKQWw4fPsyKFSt4/fo1DRs2pECBAoSFhXH//n2RUSFbaK7HmvU4tddC0qZZl0uTxaioKEqWLImuri6fP39GoVCwfv16sSOWkG20+0N/dU96584dJk6cyKtXryhWrBjm5uZ8+PABtVrNxo0bcXd3z8FWC8LXRDFJ+NsUCgX37t3D1taWYsWKAbBo0SJq1apFtWrVvvq8ZntgtVrN9u3buXPnDs+fP6dChQrUqVOHZs2aAWIRTiHrKBQK7t+/T/HixbG2tgZg4cKFtGnTBldX17/87rZt27h16xavX7+mfPny1KhRg+bNmwMio0LW+vKm8luFSu1dsZ4/f86ePXu4ePEiqamplClThiZNmtC+fXtA5FPIet/q+HyZU+3c3bx5k7Nnz3L69GnS09MpWbIkLVq0EBkVstzbt295+/Ytbm5uWFpa8uLFC/bt20evXr2+ubuVJntv3rzh2LFj3Lx5E5VKRdmyZencuTPOzs65cBRCXhYREUF0dDSlSpXC1NSUZ8+ecfr0aby8vChQoMCffi8pKYlVq1YREhJCSkoK5cuXp0OHDnKfSxBykygmCf8T7S1Unz59ypgxYyhTpgxDhw5l8uTJPH36lICAAL777rtvjtr48oZUU2DSEDeYQlZRqVS8ePGCCRMm4OHhwYQJExg2bBg3b95ky5YtVKpU6Zvf+7KD9OUTTpFRIStpnwP37dtHyZIlqVChwjc/+2U2NVOFjYyMMDExAUQ+haynfd0+duwYxsbGNGzY8Juf/TJ/sbGxcr4104NFRoWstHPnTpYvX463tzelS5emR48eNGjQgKlTp1K4cOFvfkeMLBZySnp6OkeOHGH+/PmMGTOGEiVK0LlzZ6pWrcr8+fPlB51fEudJ4Z9OFJOE/0lERAROTk7y3wEBASxevBg7OzsUCgWzZ8+mZs2aGBgY/OXvaD9l1+zyIghZISwsTH6y+PnzZ/bu3cvChQvljE6bNo26dev+ZUbFjaaQE7Q76Zp1kOzt7dm6dSsmJiZ/msE/y6fIrZDVtDPq6+vLo0ePcHd3Z8aMGRQqVOgvv6udR+0HUSKjQlZKSkpi+PDh3L59G7VaTZUqVfjll1/+qxFG2h12kU0hu4SGhrJ06VJ+//13dHV1qVq1KmPHjqVkyZJ/+T2RSeGfTJQ6hf+zy5cv06RJE3bv3i2/5u3tjYWFhTx8087OTu6k/1W9UnNy1NXVFSdKIcucOXOGrl27yotqWlpa0qVLF2xtbXn//j3u7u6UKVPmPxY7RSaFnKDppA8bNozg4GDGjBnDypUrMTU1lTve3/Jn+RS5FbKaJqNDhw7l7t279OnTh6lTp35VSPpWVrXzqPm3yKiQlSRJwszMDD8/P1JTU5EkCXd3dywtLQEy7Sb4LdojP0Q2hexSvHhxOnTogEKhQKlUUr58+f+q2CkyKfyTiWKS8H+mq6uLq6urvKuAJElER0dTrlw5GjVqxPXr1/ntt98ICQkB+MvOkCBkB0dHRxQKRaaplFFRUVSsWJGWLVty/fp1VqxYwcePH+X3RUaF3HTo0CFu3LjByJEjadKkCfb29vKOLlFRUbncOkHIWFD7xo0bDB8+nFatWlG4cGFUKhWSJBEWFgaITo+QOzS5+/TpE/Xr18fDw4Pt27ezZ88eYmNj0dXVFdd4IVdpCpqxsbG0bNmSqlWrsnbtWg4cOEBqamout04Q/ndimpvwP3n37h0ODg5AxgKbVatWJS0tDSMjI3nKW9u2benfv3+mBY7/2520BOF/pRmuHhMTg5WVFfBHRhUKBZ8/f+bw4cMsWrSINm3aMHLkyExz1cX8dCE3rFy5ks2bN3PgwAHs7e2Jiori6NGjHDt2jJcvX9K0aVN69OhB2bJlc7upQj61YsUKNm7cyNWrVzE0NOTjx48cP36c48eP8+bNG2rUqMHEiROxsrIS51EhR3wrZwqFAkmSGDRoELdv32b48OF07NiRggULyp/R7PYmCNnty4ympKSgUqmIiopiyZIlnD17lokTJ9K+fXuxLqfwr6T/nz8iCH/QzNvVFJKWLFnCqlWrmD9/Pq1atQIyprylp6ezfPlyALmglJCQwNWrVylQoAA1a9bMtWMQ8jbNxVczvH369OkcPnyYCRMm0LZtW+zs7GjXrh0qlYqlS5cCyAWlxMRELl++TIkSJShVqlSuHYOQt3254QCAnZ0dsbGxnDhxAnNzc9atW0dKSgpFixblp59+IjAwkIIFC4pikpAjvvXgx8nJieTkZNavX4+LiwtLliwhMTERJycn6tWrx+HDhzExMWHGjBmiEyRkO01Go6OjefnyJTY2NtjZ2cm7Yq1YsYLBgwezdOlSJEmiS5cumJmZ8fr1a27cuEG1atVwcXHJ3YMQ8jRNRmNiYggNDcXGxgZbW1vMzc0xNzdn+PDhSJKEv78/AB06dEBfX5/Q0FDu3btH3bp15YeigvBPJYpJwt9SsWJFatSowezZswHkgtLQoUPR0dFh2bJlpKen07hxY968ecOiRYtYsGBBbjZZyOM0BU/NsPf27dtz/fp11q1bh1qtpn379lhbW9OxY0d0dHRYsmQJAI0bN+bZs2csWbKEBQsWiGKSkG00haTt27fz888/o6enR/369Wnbti3z589HrVZTt25dWrZsSevWrYGM6Rvnzp1j+PDh8m5YgpBdNIWk9evX06tXL/T09ChfvjxNmjRh9erVpKamUr9+fVq0aMGPP/4IQHJyMjdv3iQ5ORlTU9PcbL6Qx0mShJ6eHi9fvmTIkCG8f/8eU1NTypQpw9SpUylWrBgmJiasWrVKLiglJSVRpkwZdu3axZMnT9i7d29uH4aQh2ln1Nvbm8jISFQqFc2bN6dz585Uq1YNV1dXfHx8AJg5cyZJSUk4OTmxb98+rly5wrlz53L5KAThPxPT3IT/mvaTyqioKGxtbQG4ceMGK1askLdf1xSUANasWcPChQsxMjJCrVbj7e3NkCFDcqX9Qt6nndHPnz9jbGyMiYkJz58/x9fXFx0dHfr27Uv79u2BjC3VDxw4wNy5c9HX10dXV5fBgwfj7e2dm4ch5ANnz55l8ODBdOjQgRkzZgAZnfFnz56hUqn47rvv5GkYERERTJgwAUtLSxYsWPDVqCZByA6HDx9m9OjRNGnShMWLF6Orq8u7d+9ISEggISGBihUryln88OED48ePx9zcnEWLFonp7EK20TwwiomJoUuXLtjY2NC8eXMiIiI4ffo0aWlpbNq0Sd4hS6FQMHToUC5evIixsTHm5uasWbOGMmXK5PKRCHmVJqNxcXF06NABe3t7fvjhB+Lj4wkMDMTR0RFvb28aNmwIwKtXrwgICODQoUOYmppiZmbG6tWrRUaFfwVRTBL+K9qd9FmzZhEeHk6tWrXo1q0b8NcFpYsXLxIdHY2NjQ1169YFxFxgIetpZ3T27Nl8+PCBBg0a0Lx5cwwMDP60oJSens7Tp0+5e/cuxYsXp1atWoDIqJC9Pn/+zIEDB1i4cCGtW7fG39//m4sXR0REcODAATZt2sTkyZNp06ZNLrRWyI8SEhJYt24de/fupWLFiixduvSb58Tw8HAOHjzIhg0b+OWXX+SRSoKQ1TTX5bi4OPT19Rk6dCiDBg2iWrVqAPz+++8sXryYyMhIAgMDM225fujQISRJonLlyjg5OeXWIQh5nCajnz9/Jjo6Gn9/f4YPH46npycAx48fZ+XKlejo6ODr6ysXlNLT0zl//jyxsbHUqFEDR0fH3DwMQfiviWKS8B9pKuyQsR7So0ePaNWqFV26dMm0peVfFZS0iU66kNW0Mzpw4ECePn1KvXr1GDhwII6OjnLm/qyg9CWRUSEraRc6tf8dFxfH3r17WbhwIW3atGHatGmZRnQcOnSIQ4cOcfv2bQYNGsSAAQOAzHkXhKzw5RpJmnW9EhMTWbt2Lbt378bT05MlS5agp6cnf/7YsWPs37+fW7duiYwKOSIqKopWrVphZWWFpaUlv/32W6aFiy9evMi8efO+WVAShJwQGRlJjx49sLS0JDU1lQMHDmS6pzxz5gxLlixBV1cXHx8fuaAkCP9Gorck/EeaG8JFixYRHBzMuHHjGDp0KM7OzkiSJG+3Wq1aNYYMGYKbmxtz5szh0KFD3/w90UkXskJ6err8b01GFy9eTHBwMKNHj2bMmDE4OjoiSRK6urqo1WpKlSrF4sWLkSSJjRs3smfPnm/+tsiokJU0nfSYmBj09PRQKpUAWFhY0L59e/z8/Dh48CBTp05FpVIB8Pr1ay5cuEBKSgpTpkyRO+lqtVp00oUsp8nos2fPgIx1vdLT0zE3N6d///507NiR4OBgfH195UJSaGgou3btQqFQiIwKOSY1NRVPT0/i4+OJj4+Xt1VXKBQA1K1bl1GjRmFvb0+PHj3kTAtCTilQoAAWFhY8f/6c5ORkkpKSAORrf+PGjfHx8UGtVrN8+XJOnTqVm80VhL9FjEwSMrl+/ToVK1bEyMgo0+upqakMHDgQHR0dVqxYgZmZWab3tUdy3LhxgyVLlnDv3j0OHz6Mi4uLuLEUssyVK1f47rvvMDc3z/T0Oy0tjX79+mFoaMiqVasyPakE5MKnZoTSkCFDSE1NZdOmTbi6uubGoQj5yPTp09m2bRtnz57FwcEh09bUsbGx7Nq1i4ULF9KzZ0/GjRuHrq4ukZGR6OjoYGdnB4gRc0L2mjFjBmfOnGHWrFnUqFEDyDxCacWKFWzevJnmzZszZ84c9PT0CAsLw9DQEHt7e0BkVMgZISEhrFy5kqNHj9KtWzcmT54MkOm8eunSJSZNmoSenh4nTpzAwMBA3IsK2UZzP6o5ZyYlJTFy5EjOnz9Pp06dmDBhAsbGxpky+vvvv/Prr7/i5OTEunXrxMYFwr+SKCYJstDQUJo3b07VqlXZtGlTpiHvnz9/pl27dtSqVUvewvKvXL58meTkZJo0aZKdTRbymWfPntGxY0dKlCjB7t270dfXl28Oo6Ojadu2LfXq1cPf3z/TBVu76JSamoqxsTFPnjzh2bNntG3bNrcOR8hHjh07xrJly0hISGDnzp04Ojpmymh4eDh9+vQhPDyc9u3bf7WGkpg2JGS3PXv2sHHjRkxMTBg5cuRXBaXY2Fi6du3Kq1evqFevHitXrsx0nyAyKmQ1zSg4TVdFO1/aBaVevXoxbtw4IGOEkuZh0tWrVylatChFixbN+cYL+YImo98qpCclJTF8+HDu3r1Lp06d8PHx+aqgdOHCBUqUKCEyKvxriS1hBJmVlRVjx44lPT39q51Y9PT0MDU15cWLF8THx1OwYEEg883j+fPnefPmDV5eXtSuXVv+rnhSKWQVFxcXevTogZ2dnXwhhowcFipUCFtbW16+fAmAgYGBnD1NRq9evUpkZCStWrWidOnSlC5dGhAZFbLWtzrVLVq0wNDQkHnz5tGpUyd27dqFo6Oj3PEpWrQoNWrUwNramn379tGiRYtM51HRSReyknZGNZ2hDh06YGxszMqVK5k3bx6jR4+mRo0a6OnpkZ6eTqFChfjuu+8wNjbm+vXrXLhwIdNaHyKjQlbS5PLNmzds2LCBFy9eYGFhgaenJ127dsXV1ZVBgwYBsGnTJgDGjRuHoaGhfF6tWbNmLh6BkNdpZ3T9+vW8evUKHR0d2rRpQ7Vq1XB2dmbJkiX4+Piwa9cuJEnC19c3U0GpXr16uX0YgvC3iN6TQHh4OEqlEgsLC7p27Ur//v0BWLt2rTwXvWDBgnTp0oWHDx9y+PBhIPPN6Lt37zh06BCvXr0iMTEx0++LTrrwd3348AGlUomRkRF+fn707NkTgGXLlpGYmIiOjg66urq0bt2ae/fusXz5ciAje5onmu/evWPTpk08evQItVqd6fdFRoWsolKp5POiUqkkMTGRtLQ0IGOdhNGjR2Nubk6nTp0IDw+Xn6BHRETII+WOHTuWqZAkCFlJO6NApmt2q1atGDhwIKmpqcyfP58rV66go6ODvr4+kZGRvHv3jm7durF582axaKyQbSRJQk9Pj5CQEDp16sS1a9cwMzPjw4cPbNiwgR49epCYmEjJkiUZOnQoLVu2ZNOmTcydOxfgq2nugpDVtDPauXNngoOD5Yecv/zyC7/88guPHz/G3NycpUuXUrFiRXbv3s3SpUtJSUnJ9EBUEP7NRA8qnzt27Bht27bl6NGjpKenY2RkhCRJXL58mQULFjB27Fi5oFS/fn0aNGjA9OnT2bx5M1FRUUDGQrH79u3j4sWLeHp6Ym5unpuHJOQx586do2nTpgQFBWXacejEiROsXLkSHx8fEhMT0dXVpW7dutSsWZN169axePFiIONpeUREBHv37uXu3bvyk3VByGra+Zw3bx59+vShZcuWDBs2TN6QQFNQsrCwoEOHDvz+++9cuXKF/fv3ExERgbu7OyVKlAD4qugpCH/Xlxnt2rUrTZo0wcfHhx07dgDQpk0bBgwYgEKhYNq0aRw5coT79+8TGBjI06dPcXd3p0KFCoDIqJA9dHR0iI+PZ8KECZQqVYp58+axdu1a9u3bh5OTE0+ePOH27dtIkkTx4sUZNmwYbdq0YcOGDSxatCi3my/kUZoNMiAjo3FxcUycOBE3NzdmzpzJxo0b2bJlCyVLliQkJIS4uDiUSiVmZmYsXbqUypUrs2HDBlavXp2LRyEIWUusmZTPxcbG0qZNG/T09Bg5ciTNmjVDT0+P2NhYTp48yZw5c6hVqxYLFizA0NCQ+/fvs27dOk6dOoWjoyP29vZER0fz9u1bhg8fLu/mIghZJSQkhHHjxhEVFcXMmTOpUaMGurq6pKWlsWnTJgIDA3FxcWH58uWYm5tz//59li1bxqVLlyhWrBi2trbExMTw5s0bkVEhRwwcOJC7d+9Srlw5ChQowO3bt/n48SP9+vXDz88PXV1drl27xtq1a+WRHzo6Ovj4+DBw4MDcbr6QD3h7e3Pv3j1Kly6NjY0NV65cITExkVatWsnrIp45c4YtW7Zw/fp1+Xt+fn7iHCpkqSNHjtCqVauvXn/16hVeXl74+PjQoUMHIGPH1nXr1jFt2jSaNGmCubm5PE39xYsXbN68GS8vL0qWLJnThyHkYTt27KBz585A5oL88+fP6d27N76+vnTs2BGAhQsXsn79en755ReaN2+Oubk5aWlpGBkZkZiYyIQJE/D19ZUfGgnCv54k5FtKpVKSJEmKjY2VfvjhB6lu3brS4cOH5dfj4uKkHTt2SBUrVpSGDBkivx4ZGSnt379f6t27t9SpUydp4sSJ0tGjR+XfValUOX8wQp4WGhoqde3aVapVq5Z0+fJlSaFQSJIkSWlpadKqVaukOnXqSF5eXlJ8fLz8+X379kl9+vSR2rVrJ40ePVpkVMgRmzdvljw9PaVDhw5JCQkJkiRJ0sOHD6XJkydLHh4e0sKFC+XPJicnS6dOnZL2798vXb58WX5d5FPITlu3bpUqVqwo7d+/X0pMTJQkSZJev34t+fr6SqVLl5YmT54sf/b9+/dSUFCQtGPHDunq1avy6yKjQlY4ePCg5O7uLi1atOir927evCmVLVtWevDggSRJkjRnzhypbNmy0s6dO6Xk5GRJkjLuAXbv3i2lpaVJkiTJ9waCkFV27twpubu7S1OnTpVf0/SHLl26JFWqVEkKCQmRJEmSZs+eLWc0JSVFkqSMc+X58+fl+wG1Wp2zByAI2UwUk/I57cJRkyZNpDp16kiHDh36ZkFp8ODB8gVbkiQpJSVFSktLy3RTKW4whezy6tWr/6qgpLlga6Snp4uMCtnmyzxNnjxZqlevnhQTE5Pp9bCwMGnChAmSu7u7dPr06f/69wTh7/pWRuvXry93yDXn0oiICGnIkCFSpUqVpEOHDkmS9O2Oj8iokFUiIyOlhQsXSqVLl85UaJckSXry5IlUtmxZaf/+/dLChQulMmXKZOqkS5IkzZs3T+revbsUGRmZ000X8on3799L06ZNk77//vtMhXZJyrgvLVeunBQYGCitXr1aKlOmjLRjx45MGZ0+fbrUsWNH6dOnTznddEHIEWLNpHxOX1+f9PR0ChYsyO7duzExMWHevHkcP35cfr158+aMGzeOq1evMnLkSHkNJSMjIwwNDTMtXiwWMhayS/HixZkxYwbFihVj7Nix3LhxA6VSiaGhIX369JG3rB46dKi8oKxmOLL2YrMio0JWUalUcp6eP3+OWq0mLS2NtLQ0LCwsgIxt1QGKFi3KTz/9hImJCRcvXgSQF4fXJvIpZCXtjEZGRgIZW6enpqbKC8Pr6+sjSRKOjo74+Pigq6vL3bt3gW/v0CYyKmQVOzs7unfvTr9+/Vi9enWm9Y48PDxo2rQpEydOZPXq1fj7+9OqVSt5zcN79+5x69YtHBwcKFCgQG4dgpCHSZKEvb09AwcOpEWLFpw8eZIpU6bI79vb29OyZUtmzpzJwoULmTt3Lq1bt5YzeufOHZ49e0bx4sXFWp1CniXuCPIp7U6Mvr4+KpVKLigZGxv/aUEpKCiIESNGkJqaKrYBFrLVtzraxYsXZ/r06X9ZUAoLC2PQoEEkJibK89pFVoXsoMlXjx49mDdvHhEREXh4ePD582e2bduGJEno6+ujVCoB8PT0xNXVlefPn6NUKkUuhWynyWjnzp3p168fiYmJuLq68vnzZy5fvizv7CZJEmq1Gjc3N0qWLElwcDBKpfKb52FByEqFCxemR48eDBgw4KuCUteuXalatSqGhoaYmZnJC75funSJpUuX8u7dOwYNGoSpqWluNV/IwzTnRltbW7y9vWnZsmWmgpKJiQnNmzenePHimJmZoVQq5SxevXqV5cuXExYWhre3t8iokGfp53YDhJyXnp6Ovn7G//QJCQno6OhgZmYGIBeUOnbsyLx58wBo3ry5XFBSq9X8+uuvXLt2jfr16+fWIQh5nHZGNTu16evrY2hoiIuLCzNmzGDixImMHTuWOXPmUK1aNbmgpFKpWLt2LUFBQfzwww+5fCRCXqSdzxs3bhAdHU3//v1xdnamY8eObNu2jd9++w17e3saNWokbwEcHh5OYmIi1apVE9sCC9lKO6NnzpwhMTGRrl27YmxsjJeXF2fOnGHhwoXY29vz3XffyXmMiIggISGBChUqiIwKOUZTUALkna5GjBhB5cqV6dWrFwqFgmHDhlGiRAkkSSIhIQF9fX3WrFmDi4tLLrZcyOu+LCgBHD16FEmSmD59OvXq1SMlJYW1a9cybtw4Nm/eTFpaGikpKahUKlavXk3x4sVz+SgEIfuI3dzyGc2uFwDTp0/nzp07KJVKHBwc8Pb2plixYlhZWREXF0fHjh1JTU1l9OjRNG/eHH19feLi4vjw4QOlSpXK5SMR8irtjE6bNo2HDx8SHx9PyZIl6datGzVq1ADg9evXTJgwgbCwMLmgZGBgQFpaGs+ePZO3rhaE7LJ161ZevnzJo0ePWL9+PQULFgTg6dOn9OvXDwMDAzp37kzPnj0JDQ3l9OnTrF27ltmzZ39z9yJByGr79+8nPDyc69evs3btWkxNTVGr1dy4cYNff/2V1NRUBgwYQMOGDUlISODw4cNs3LiRWbNm0bJly9xuvpBHSZL0zZGZkZGRbN++nTVr1jBgwAD8/PwA+PDhA8ePH+fBgwekp6dTqVIlGjdujJOTU043XcgntDOq/e8PHz4QEBDAsWPHaNKkCdOnTwcyrvv37t3j3LlzGBoaUq5cOVq0aCEyKuR5opiUj2ifDIcNG8aVK1fw9PREV1eXR48ekZaWRp8+fWjXrh1FihSRC0rp6en4+PjQokWLTE8qtTv9gpAVtDM6ePBgrl+/TsWKFTEwMOD+/fvExMQwevRounfvjpGREa9evWLy5MlEREQwY8YMvv/+ewwNDeXfExkVssvx48cZMWIEDg4O1KxZkxkzZshThfT09Hj58iXDhw/n1atX6OjoyOslDBo0SGytLuSIs2fPMnjwYExNTalbty6LFy+W30tPT+fu3bssXryYW7duoa+vj5GRESqVisGDB4uMCtlGs5ZhfHw88fHxfP78GQcHB6ytrQF4//49gYGBXxWUIPOIO0HILpqMxsXFER8fT2RkJGXKlEFPTw9jY2Pev3/PmjVrvioogbjvFPIfUUzKJ7RPbprh7j179qRt27bo6+sTHh7OvHnzOHPmDL6+vnTu3JmCBQsSHx9P27Zt+fz5M3v37qVEiRK5fCRCXqW5eEPGkx9NDps0aYKJiQl37txh27ZtHD9+nDFjxuDl5YVarebNmzeMGzeOx48fc/LkSRwcHHL5SIT8Ys2aNSxcuBB9fX02b96Mp6cnkLmzdOXKFZ48eYKdnR0uLi7UqlULEDecQvZLSkriwIEDLFiwAAMDAwICAqhUqdJXn9u7dy/v37/H3Nwcd3d3efSnyKiQ1TTnxpCQEMaPH09ISAhJSUk4ODjQsGFDJk2aBGQeoTRw4EBGjBgB/PmIJkHIKtoZnThxIq9evSI+Pp7ixYvzww8/0K1bN+zs7DIVlJo2bcq0adMAUCqVGBgYiKwK+YYoJuUzw4cPx8zMjBcvXrBy5UpsbW3l9xQKBSNHjuTGjRts3boVNzc3AOLi4jh79izt2rXLrWYL+cjUqVP5/Pkzt27dYseOHTg7O8vvvXnzhsWLF3Py5Em2bNlC5cqVAQgJCeHFixc0a9Yst5ot5GF/1alet24d8+fPp27duowcORJ3d3fgr5+gi066kNX+LFPx8fEcPnyYWbNm0ahRI0aOHCmfU7UL+P/t7wnC3xUWFkbnzp0pUaIEtWrVwsnJiV27dnHz5k1q1arF+vXrgT9GKG3YsIFu3boxfvz4XG65kF+Eh4fTqVMnSpQoQY0aNbC1teXgwYPcu3eP77//nhkzZlCkSBEiIyNZvXo1p06dokaNGsyfPz+3my4IOU6MFc3jtCvjz58/JzQ0lHfv3lGwYEGSk5ORJAlJktDV1cXQ0JAhQ4Zw8eJF1q9fz+zZs1EqlVhYWMiFJHGDKWQ17YxGRERw/PhxDA0NsbS0xMrKCvjjSU+xYsXo1KkTZ8+e5dixY1SsWBE9PT1cXV1xdXUFREaFrKVdFHrw4AGJiYmYmJhQpkwZDA0N6devH6mpqSxfvhwTExOGDh2Km5ubvN262FpdyG7aGX3y5AkJCQno6elRuXJlChYsSMeOHVEqlcybNw8jIyOGDRtG0aJF0dPT+9Pzpcio8HfFxMTI13ANSZIIDAxET08PPz8/eTRnjRo1CAwMZNWqVQwdOpTly5dTpEgRunfvTnJyMvv372fgwIFf/Z4g/B1fXqM1U9W3bt2KkZERfn5+8kPLTp064e/vz759+5gzZw5Tp07F3t6eQYMGkZKSws2bN/n48SOFCxfOrcMRhFwhikl52JdPHUuVKsWECRNYu3YtV69e5dSpUwwYMAAdHR35sx4eHhQrVoyPHz8CfLWbi7jBFLKSdkaTkpJwcnJi69atjBw5khcvXrBixQrGjh2LgYEBCoUCQ0NDatSogbOzMyEhIaKjLmQrlUold9L9/Py4efMm0dHR6Onp0bBhQ9q1a0eDBg0YOnQourq6LF26FEmSGDZsGG5ubmKIu5DtvsxocHAwkZGRGBsbU7lyZUaOHImHhwddu3YFkHdp1RSUxPlSyA4jRowgNTWVKVOmUKRIEfl1tVrN8+fPsba2lgtJSqUSGxsbunfvTlxcHNu2bWPfvn20b99e3kFr8ODBopAkZKmRI0cSGxvL2rVr5fOgjo4Oenp6hIaGYmFhIReSNPefEydOJCEhgWPHjtGqVSsaN26Mra0to0aNQpIkUUgS8iVxF5GHaTrpgwcPZvfu3UDG059Bgwbh6enJwoUL2bVrV6bPfvjwgfT0dExMTFAoFIhZkEJ20uTO19eXCxcuABlFz8WLF+Pq6sru3bvZsGEDgLywdkREBAqFAmtra9LT03On4UK+oMnn8OHDuXbtGr169SIgIID58+dz6tQpli1bxv3794GM8+zw4cM5deoUixcv5unTp7nZdCGf0M7o9evX6dKlC+vWrWPy5MkEBwczefJkwsLCMDQ0pHPnzowePZoTJ06waNEi3rx5k8utF/KqYsWKcf369a+u0To6OlhYWBAdHU1kZCSAvL6MpaUlPXv2xNjYmCdPnsjfsbGxEYUkIUtp1ul68OABb9++lV9Xq9WkpqYCGVOEP3z4gFqtxtDQEJVKBcD48eMpUKAA58+fl79jY2MjCklCviWKSXnchw8fOHv2bKaiUNWqVeXhxVOmTGHp0qXcuXOH27dvs3nzZl69ekXDhg0xNDQUT9aFbBcdHc2JEyfkG0uVSoWrqyuLFi3C1taWpUuXMn36dN6+fUtQUBB79uwhLCyMWrVqZdq5TRCyw9WrV3nw4AEjRoyga9eu1KtXj2LFiqGrq0vFihVxdHRErVYDGQWlIUOG8Pvvv/Phw4dcbrmQX1y7do3g4GB8fHzo1q0btWvXxt7eHqVSSalSpTA3NwfA2NiYTp064evry7FjxwgLC8vllgt50Zs3bxg2bBjHjx+naNGifPz4Ub6+6+rqUqZMGfm6n5SUBCCfQ52dnbG1teX9+/e51n4h70tKSsLPz4/Dhw9TtGhRoqKi5Cm/xsbGNGvWjPfv33PhwgV51JLmvwYGBpiamhIbG5vpdUHIr8T/A/Kw9PR0ChUqRPHixXnw4AGQMVQToEqVKvJc4JUrVzJgwAAWL17MjRs3GD16NO3btwcQI5OEbKVSqTAxMcHe3p53794BGRdmtVpNqVKlWLJkCU5OTmzbto0ePXowZswY7t69y4gRI+SMCkJ2evfuHQkJCXz//feYmJhw7do1OnfuTPPmzRk4cCDW1tbo6uqSkJAAZEwf2rVrF/Xq1cvllgv5RXh4OCkpKTRs2BBzc3OCgoIYMmQIzZs3x9fXFxsbG/mzpqamdOrUiX379lGnTp1cbLWQF127do02bdoQERGBnZ0dMTExtGrVioULFxIREQFAv379qFWrFqtWreLkyZPExsbKI+yCg4NJSkqiVKlSuXkYQh529epV6taty927d7Gzs+Pz58+0a9eOESNGyCPp6tWrR/369Zk2bRpHjx5FrVZnWn82PT1dXqdT9JOE/E4Uk/7FtE9garX6q+HE+vr6GBkZUapUKW7fvg1kTBXSfK9KlSr4+PhQs2ZN0tPTqVOnDrt376Zv377yb4qRScLfoZ1RSZK+yqienh5mZmaUK1eO4OBgEhMTgYyCkkqlws3NjSVLluDq6oparaZNmzYEBAQwYMAA4I+nmYKQFbTzpPl3amoqurq6ODs7c//+fQYOHMgPP/zA2LFjsbOzA2DTpk1s2bJFznf58uW/+j1ByArfypShoSFqtRoTExPu3r3LoEGDaNy4MaNHj5YzGhAQwJQpUwAwNzenTJkyf/p7gvC/SktLIzU1lQ0bNpCeno6VlRW9evXi2LFjrF+/nvDwcCBj19aSJUvy66+/MmfOHK5cuUJgYCBLlixBrVbTtm3b3D0QIc+Ki4sD4Pz58/LUtW7dunHx4kWmTJmCJElYW1vTr18/PD09GTt2LNOnT+fEiRPs2rWLBQsWkJqayk8//QQg+klCvicW4P6X0ixcnJKSgomJCbq6uvJQyzlz5uDk5ISdnR1VqlTBzs6OZ8+ekZiYiJmZGTo6OvLuL9WqVUOlUrFixQoWLVqElZUVHTp0EDeYwt+mnVEDAwP09fXlhWIXL15MgQIF+O677yhTpgw2NjY8ffoUHR0d+cKso6ODJEm4urqyYMECRowYwZEjR7Czs6NHjx65eWhCHqTZ1RIypgdrOuFVqlTB2NiYwYMHExQURLNmzfDx8cHW1haA169fc/LkSYoWLYpSqURfX1/OsBj+LmQl7Yy+e/cOBwcHAOzt7TExMWHGjBmcOHGCpk2b4ufnJ2c0JCSEmzdvYm1tTXJyMqampvJviowKWalGjRp8//33XLhwgT59+lCsWDEGDRqEiYkJs2fPRpIkBg4ciLOzMytWrMDf358jR46wf/9+TExMcHR0ZOPGjTg7O+f2oQh5VPPmzTly5AgHDhygT58+WFpa0qVLF0xMTFiwYAGSJDFr1iyqVKnC2LFj2b9/P1u3biUwMBBzc3OKFCnCpk2bREYF4f8TxaR/IU0n/ePHj3Tt2hVfX19atmwJwJ49e9i3bx+pqamoVCosLS1JSUkhMTGRjRs3UqZMGb777jv09fUpVKgQkHHx19PTY8mSJUyZMgV9fX3xVEj4WzQZjYqKwtfXl65du9KqVSsATpw4webNmwFITk7GwMCAwoUL8+7dO+bOnUuLFi2wsbGhSJEimJqaIkkSHh4eLFq0CD8/P3nnjW7duomOkJAltLdH/+WXX7h//z7z5s3D1dUVJycnqlWrxpEjR3Bzc2Ps2LHyYrCRkZHs37+f8PBw+vTpg4mJSW4ehpCHaWd08ODBpKamMmrUKMqUKcP3339P9erV2b9/P2XKlKF///5yMTQqKopDhw7x/Plzpk6dmqmQJAhZSbNQsa+vLz169GDfvn2MGDECgF69egHIBaUBAwbg6OjIvHnz6NOnD58/f6ZgwYI4ODiIxbaFbKM5j7Zr147z58+zfPlyJkyYgKWlpbx0woIFCwCYNWsWZcuWpWzZsvz0009ERUVhZmZGiRIlREYFQYuOJCZ7/qtoF5J++ukn7O3t+eWXX+Qh65BxsgwPDyc6OpobN24QHx/Pxo0bATAxMSEtLQ1HR0dKly5NwYIFmT59Ojo6Oty8eZNly5Zx48YN5s2bR+vWrXPrMIV/Me2MtmvXDltbW2bPnp1pDYS4uDhUKhVPnjzh5cuXvHnzhu3bt8vbsurq6lKsWDHs7e0pUqQIY8aMwdzcnOfPnzNy5EjevHnDxIkT+fnnn3PxSIW8QDNKEyAmJoYJEyYQEhJCsWLFmDhxIsWLF+fDhw/4+fnx6NEj6tSpQ69evQgPD+f69escOnSIkSNH0qdPn1w+EiGv0s5oWloa06ZN4/Dhw7Rs2ZJu3bpRrlw5lEolQ4cO5cKFC7Rr144OHToQFRXFlStX2L9/P35+fvIUdkHITp8+fcLPz4+QkBDWrl1L6dKl5fc2bdrE7Nmz6dy5M3379qVo0aK52FIhv0pMTKRPnz7ExcWxYcMGHB0dgYx703379rFgwQJat27NjBkz5PW8BEH4NlFM+hfR7qS3b98eBwcHJk2aJK/P8WfevXvHoEGD8PT0pG3btgQHBxMWFsa1a9do166dvP4MQFBQEBs2bGDs2LGULFkyuw9JyGO+zKijoyMTJ078jxl98eIFvXv3pnPnzlSpUoWQkBDu3bvH48ePadu2Lf369ZOfKD158oQpU6Ywd+5cihcvnkNHJuRF2qM9hg4dyufPn3nz5g2mpqbyjoHjx4+nZMmSfPjwgeXLl3PhwgWio6PR1dXF1dWVjh070r17969+TxCygnamfHx8CA0NpUCBArx+/ZpPnz7RrFkzBg4cSOnSpZEkifHjx3Pu3Dl5XZCSJUvSuXNnkVEhy0mSJE/p/TJXx48fZ8SIEUyePJlu3brJ9wbwR0Gpe/fueHl5iYKSkCM0edVkNSgoiH79+jFixAj69esnf067oNSuXTt++eUXUVAShL8gikn/EpqTn6aTbm9vz5QpUzJ10qOjo3n16hXVqlXL9F1Jkmjbti3Ozs4sW7ZMfl2hUMhbq2tf6FNTUzE2Ns6BoxLyEk2GoqOjadeuHQ4ODkycOJEKFSrIn/n06RMfPnzINJJOo3PnzlhZWbFy5cpv/r5mHS9dXd1M2RWEv2vy5MmcOHGCCRMmUKlSJSwsLFixYgWHDx+mXLlyckEpOTmZuLg4njx5gq2tLRYWFnJHSHTShew0efJkTp48yahRo6hfvz6fP3/m999/Z+nSpTRp0gRvb2/5vBoSEsKnT58wNzenYMGCODk5ASKjQtY5ceIET548oW7dulSuXFl+XXMfoFar6d+/PyEhIezcuVOedqmxefNmZs6cSe/evRk5cqQ88k4QssqRI0e4f/8+P//8M87OzhgYGMjnQEmSiIqKYsSIEXz48IG1a9dSokQJ+btxcXHs379fLnpOmjQpF49EEP7ZxNn7X0JXV5fPnz/TpUsXChUqxPz58+VhmZCxNbCXlxeNGzemQoUKcjFIc2EvXbo0jx49QqFQYGBggCRJ8sVbkiT09PTkqr0oJAn/C00hqX379hQqVAh/f/9Mo9vCw8Pp0KEDnTp1omTJkl8VgxwdHXn8+LH8t3bHR3vhWQADA4NsPhohv4iKiiI4OJgaNWrQokULjIyMAJg0aRKWlpasX7+eWbNmMWnSJIoXL46pqSlFihTJ9Btf5lMQslJMTAw3btygVq1atGvXDgMDA2xsbHB3d6dQoUJMmzYNXV1d+vbtS/ny5XF1dZW3rdYQGRWySkxMDPv37+fChQts27aNFi1a0KVLF1xcXDAxMZGv3fXr1+fKlSscO3aM3r17Z7qm9+zZU94ERhSShKwkSRKxsbEEBgZy+/Ztjh8/Tq1atRgyZAh2dnYYGhqio6ODnZ0d7du3Z9KkSdy7d48SJUrIU4otLCxo06YNBgYGVK9ePbcPSRD+0cSdxb/I4cOHiYiIwNDQEF1dXfkCrCkk2dra0rVr10zFIM1oo0qVKhEWFsbbt2/R0dHJtPub9u5ZgvB3XL58maioKCwtLVEqlfLrmoyWKFGCdu3aZSokaQZHVq9enffv3xMWFgZk3mXoy2yKrApZRV9fn8TERMzNzeVCkia7Q4YMoVWrVly5coUZM2YQEhICfL2dusijkJ2USiVxcXGYm5tjYGCASqWSM9e1a1f69+/PqVOn2Lp1a6aCvDaRUSGrWFlZsWLFCjZv3kz16tU5evQoXl5ejB07lhcvXpCamgpAjx49KFOmDAcOHAAyruna586uXbuK5RSELKejo4OlpSWLFi1i3759uLm5ceLECdq2bcuvv/7K1atX5c926NCBihUrEhAQQFxcHPr6+vI9qWaXty8L84IgZCaKSf8iPXv2ZOjQobx9+5Zx48YRExNDYmIiPXr0oEiRIsyePRsXFxfgjw66hoWFBWlpaSQmJuZCy4X8om3btowbN44bN26wbNkyQkND+fTpEz179sTe3p5Zs2bJQ4k1GdV0cqytrUlNTSUlJSXX2i/kL5IkYWBggJWVFffu3ZMLmQYGBigUCiBjFyIbGxsiIiKYN28e4eHhYoSHkKNsbW1xcXHh7t27KJVKeRqRpmNeu3ZtjIyMOHLkCBs3biQ8PDyXWyzkVZrrtp6eHtWqVWPmzJns2LGD77//nqCgIDp27MiUKVM4deoUkHHfGhoayrp16wDEuVPIMba2tpQpU4bVq1cTEBBAixYtOHjwIH379mXChAmcOXMGgNatW/P27VuOHj361W+IvArCfyb+X/IvoVKpgIxFYrt27crLly8ZMGAAzZo1w8XFhWnTpmUqJGk66JqOebVq1Zg7d+5/XAhZEP5Xmo5Nr169GDNmDGfPnmXatGm0b98eJycnZs6cSbFixYDMGU1OTiY9PZ1SpUoxf/583N3dc+0YhLxLcw7VpqOjQ4ECBRgwYAChoaEEBgaSkJAAII+ee//+PYaGhtSsWZNbt26xa9cu+cm7IGSlb2UUMnLas2dPQkJCmDp1KoC866Xm35UrV2bIkCEcPnyYY8eOAV8/VBKEv+vLkewFCxbEzc2NpUuXsnr1ajp37syZM2cYPnw448aNIyoqCisrK27fvk18fHxuNl3Ih9RqtTxVbfr06axdu5ZevXpx6tQpfH198fHxwcnJCXNzc86fPw+IUZyC8H8lFuD+F9Geb7506VICAwNRKpUsX75cntOr/ZnY2Fg2btyIUqlkzJgx3/wdQchK2tnS7NhiZmbG3LlzadSoEZB5sffY2Fj27dtHREQEkydP/tOdYQTh79DO3Lp164iLi6NQoUL8/PPPmJubk5aWxsKFC9m8eTM9evSgQ4cOlCpVisjISAIDA3n8+DFr167Fx8eHu3fvsm/fPqytrXP5qIS85MuMJiQkYGlpSfv27SlYsCAfPnxgxYoV7Nq1i3bt2jFu3DgsLCyIiopi48aN3L17ly1btsiLyR88eBBnZ+dcPiohP/jyen3nzh2uXLnCtm3bMDIy4tOnTyiVSlavXk29evVysaVCfvVlRl+/fs3mzZs5c+YMcXFxmJqa8vnzZ/z9/fnpp59ysaWC8O8jVr37F9HMN9fV1WX48OEAbN++nWXLluHs7IyDg4P82djYWHbt2sXq1aszbXmp+R1ByA7aGe3Vqxd6enr4+/uzZ88eHB0d8fDwyFRI2rlzJ4sWLcLPzy/T0yCRUSEraTLXr18/rl27hrGxMcnJyZw8eZJx48bh6elJ//790dPTY9OmTRw7dowSJUoQHx/P06dPGTFiBADt27fn5MmT3Lx5k2bNmuXmIQl5jCajAwYM4OrVqxgZGZGens6WLVtYs2YNrq6uckZ3797N9evXKVasGImJiTx48IAxY8agr69PzZo12b9/PyEhIaKYJGSZv3rAo71Rho6ODpUqVaJSpUp07NiRTZs2cfPmTR4+fCjvKigI2UF7xPuXf2tnV61W4+Liwrhx4xg+fDhr1qzh/PnzqNXqTDsTCoLw3xEjk/6FtJ9gLl26lG3btuHq6srcuXNxcnIiJiaG3bt3s2jRInx9ffH29s7lFgv5jfaN58aNG5kzZw7169fHx8eH0qVLExcXR2BgIIsXL2b48OEMHjwY+PpmQBD+Ds3OLADHjh1jyZIl+Pj44O7uTmRkJNOmTUOSJKZMmULt2rWRJImLFy+ydetWYmJiKFSoED/88AOdO3cGMkaMLFu2jC1btlChQoXcPDQhj9DO6IEDB1i2bBnDhw+nWrVq3Lp1i3Xr1vHx40dWrlxJxYoV+fTpE48ePWLLli28f/8eKysrWrRoIWd0w4YNLFu2jLVr11KlSpXcPDQhj9Bczx8+fEhsbCy1a9f+j9/R3KcqlUpSU1NJTU2lcOHCOdBaIT/S5O358+c8ffqUH3/88f/0/ZcvX1KoUCFsbGyyqYWCkHeJYtI/lHbBCL7uZGt31pctWyYXlCZOnMjt27fx9/fP1EkX04aErPZlpv4qo5qCUqNGjejVqxcPHz5kzpw5IqNCjrhw4QJ3797l0aNHLFy4EHNzcyBjl8GBAweiVCqZMmUK33//PYaGhiQnJ6Ovr09qaioFCxYE4OHDh8ycOZPExEQ2bNggbjqFLHXmzBni4+O5fPkyM2fOxNjYGJVKxb1795g9ezbh4eEEBATw3Xffyd9RKBQolUrMzMyAjIzOmDGD1NRU1q9fL6ZiClnm3bt3/Pjjj7i6urJy5UqRLeEfJzw8nC5dulC5cmVGjRpF0aJF/+N3xH2nIPx9opj0D6TdKX/27NmfLkj8ZUFp586d6OrqEhUVxbBhwxgyZMhXnxOErPb06VM8PDy++d63CkqOjo68e/eOoUOHiowK2W737t1MnjwZe3t7WrZsyejRo4E/MqcpKKWnpzN58mS5oKRt6dKl3Llzh8ePH7N582axSLyQpXbu3MnUqVMxNTXlp59+YuLEiZkeKN25c4dZs2YRERFBQEDAV6PiJEli06ZNnDlzhpcvX4qMCllCk0FJkti+fTuHDx9mzJgxeHp65nbTBAHI/OD99OnTrF69milTpoiRw4KQg0Tv7R9IU0iaMGECU6dOJTEx8Zu7smjWpwEYNmwYP/30E58+fWLs2LGiky7kiJEjRzJnzpw/fV87o71792bs2LG8ffuWESNGiIwKOaJRo0YMGDCAyMhILl68yJs3b4CMbEqSRNGiRVm9ejVGRkZMmTKFy5cvy+dbSZJ49uwZd+7cIS0tja1bt4pOupDlqlatSo8ePdDR0eHx48ekpKSgp6cnnzsrVarE+PHjcXZ2pm/fvty5cyfT94OCgrhx4wY6Ojoio0KW0dPT4/Xr1/j5+fH48WNKliwpF5LEc2jhn0BPT483b97QtWtXjh8/TunSpeVCksioIOQM0YP7BytcuDBPnz7lw4cP6Ojo/MeC0ogRI9i+fTu9e/cGRCddyH5ly5bl+vXr3Lhx408/82VB6cCBAwwYMAAQGRWy1rfOkVZWVnh5edGvXz9evHjBnj17+PTpE4B8Xi1atCgrV64kPT2d2NjYTNtfu7m5MW/ePFatWoWbm1uOHo+Q92hnVKVSAVCiRAm6detG27ZtuX37NosXLwYyzp2az1SqVInRo0djY2PD8+fPM/1mzZo1mTBhAitWrBAZFbLU48ePOX36NHv37iUpKUl+XaxtKPxTXLlyhSdPnnD69Gk5lwqFQmRUEHKImOb2D6SZ5hYVFUWPHj1wc3Nj4cKFX0290PblGkuiky7khCdPnjB06FC+//57pkyZgpGR0Z9ewDWZ1ORbZFTIStrnwPT0dFJTU+W1kQBiYmJYtWoVW7duZcCAAfTs2VNe90OTycTExEzfEYSspJ1RSZJISEiQ1+QCePPmDRs3bmTHjh3ySE7IfO6Mjo7OtJCx2LRAyE6JiYmcOXOGFStWkJ6ezvLlyylbtmxuN0sQZJpdLzdt2oRSqWTXrl04OTl91S8SBCF7iJ5cLkpPTwf+eDqpoanvWVlZUbNmTe7evUtISAiAPMLjS1+eMEUnXcgKmrx9mVFNdkuXLk3jxo05efKkPKLjz+rTmkx+a6tWQfg7tG8a58yZg5eXF82bN2fOnDncvHkTyDifDho0iO7du7NmzRo2b95MTEwM8EcmNYWkPzvPCsL/Sjujc+fOpUuXLrRu3ZpZs2bx7NkzAIoVK0bv3r3p3LmzvMYc/DFCSUdHRy4kac6zopAkZJVvnffMzc1p0KABgwcPJiUlBX9/fyIiInKhdYLw7Yzq6+vTo0cPevXqRVpaGn369OHTp0/o6el9de8qCELWE725XHDu3Dkg4wSoVCrlG8y7d+8Cf3Sy9fX1GTJkCOnp6ezatSvTe4KQnS5dukRoaKg8RU2T0fv37wMZ2dR0Znr06IG5uTlLlixBrVaLzo2Qo7Tz6e3tzb59+zA2NqZ69eocPnyY2bNnc+rUKSBzQWn9+vVs2LCB6Ojor35TnGeFrKSd0YEDB7Jv3z7MzMyoWbMmu3fvZsqUKZw+fRr4uqDk7+8PfP3ASJxnhaykUqnQ1dXl48ePXL16ld27dxMUFER8fDwWFhb88MMPjB07lpcvXzJ+/HhRUBJynHZGL126xJYtW7h79y7h4eFyQWnIkCHExcXh5eUlCkqCkEP0c7sB+U1ISAiDBg2ibNmy7N27FwMDAyRJYtq0aQQGBtK2bVtatWpF7dq1AbC2tqZdu3YcOHCANm3aULFixdw9ACHPe/r0KSNHjqR06dJMnz4dZ2dnAMaMGcPRo0epU6cOw4YNw9HRkUKFCmFjY0P16tW5fv06b968oXjx4mIKm5BjNDmbM2cOL1++ZOrUqdSqVQsLCwtWr17N0qVLWbx4MWq1mmbNmskFJZVKxbp162jUqBE2Nja5fBRCXqad0RcvXjB58mTq16+PmZkZVapUYeLEiaxbtw5dXV0aNWokF5RUKhVbtmyhadOmVKlSJZePQsirNMXOly9fMmTIED58+EBqaioAxYsXZ+7cuZQvX56mTZsCMHv2bMaPH8/s2bNxdHTMzaYLeZz2sgiajA4dOpQPHz7IGxWULVuWQYMG0aBBA3r27AnA6tWr6dmzJ5s3b8ba2lpMeROEbCR6eznMzs6OiRMnEhERQZcuXYCMJ4wNGzZk9OjRXLp0iZEjR9KjRw9u3bpFcnIynTp1IiEhQV7kWEzBELKTh4cHPXv25O3bt0yfPl3e/apPnz707duXN2/e0KNHD8aNG8elS5cwNjbG19eXpKQk9u3bB4iRHULOCgsL4/LlyzRp0oQ6depgYWHB9evXCQgIwNPTE4VCwcKFCzlz5gyQMUJpyJAhbN68mUqVKuVy64X8IDw8nHv37tGwYUPq1KmDmZkZQUFB+Pv7U69ePUJDQ1m8eLGcUU1BadOmTaKQJGSpXbt28eHDB/lvXV1d3r9/T//+/XFwcGDGjBmcO3eOYcOGoVKp6NevH5cvX8bU1JTGjRszbtw4Xr16xZAhQ3j//n0uHomQV/32229A5mUR3r9/T79+/bC3t2fatGkcOXKEYcOGERUVhZ+fH8ePH0dfX5+ePXvi7e1NXFwcbdq0ISYmRhSSBCE7SUKOCAsLk5KSkiRJkqTExERp27Ztkqenp/Tzzz9n+tynT5+kNWvWSO3bt5fKlSsnde/eXQoKCpL8/PykmjVrShEREbnRfCEfeP/+faa/V61aJdWvX1/q16+fFBISIkmSJKWlpUmJiYnS0qVLpQ4dOkju7u7SwIEDpa1bt0q//PKL1KRJE+nRo0e50XwhD1Or1X/5fkJCgjR//nzpyZMnkiRJ0osXL6SKFStKfn5+kkqlko4cOSK5u7tLLVu2lA4dOvTV91UqVba0W8g//lNGIyIipLlz58rn0mfPnkkVK1aUfH19JYVCIV28eFEqW7as1KNHD+n48eNffV9kVMgKXl5eUvXq1aWXL19men337t1SpUqVpHPnzsmvpaenS1evXpXatWsnVa9eXb7/TEhIkHbs2CE1bNhQ3JMKWa5v375SmTJl5Ou55ty6c+dOqUqVKtL58+czff7333+XWrduLdWqVUu6efOmJEkZ2V21apXUqFEj6c2bNzl7AIKQz4jd3HLAuXPn8PX1ZebMmTRs2BATExOSkpI4ePAgCxYswM3NjR07dsifl/7/sM7Nmzdz7tw5goKCsLCwIC4uDh8fH7y9vQGxZoKQdS5dukT//v0JCAigfv368usBAQHs3LmTkiVLMnHiRFxcXOT3Pn36xJUrV9i0aRNRUVFER0djYGDAlClT6NixoxhWLGQJzZRJhUJBYmIit27dIiUlheLFi2Nra4u9vT0AycnJmJqaEhcXx9ChQwGYPn06Li4uqFQq2rRpQ1paGgqFgt9++y1TlgXh79DOaFxcHDdv3kSSJGxtbXFzc6NQoUIAxMbGUqhQIeLi4hgyZAgGBgb8+uuvODs78+nTJ7p06UJYWBi2trZs27aNokWL5u6BCXnKjh07WLJkCdOnT6dWrVqYmJjI782ePZtt27Zx9+5d9PT0UCgUGBoaIkkSZ86cYdSoUTRt2pRZs2ahp6dHSkoK6enpFChQIBePSMhr9u7dy5w5c5g2bRoNGjTAyMhIfm/BggVs2rSJ27dvY2hoKGcU4OjRo4wfP56ff/6ZCRMmoKOjg0qlIiEhQT7/CoKQPcRclBzw3XffUbJkSebMmcP58+dJSUnBzMyMNm3aMHLkSF68eCFPeQNQKpUA9OzZkyVLlrBu3To8PDywsrLi+PHj8q4uog4oZBUrKyuqVavGqFGjuHDhgvy6t7c3P//8My9fvsTf31+e8qb5zo8//sjKlSuZO3cu9erVQ61WExAQIIYVC1lCs+BmbGwsc+bMoUOHDgwfPpyxY8fSqVMn+vfvLy9cbGpqCkBSUhJhYWHUqlVLLhg9fvwYSZL4+eefGTNmjCgkCVlGO6Nz586la9eu+Pn5ydPVhw0bxt69ewHkTk1aWhrh4eF4enrKa9JFRkbi6OjImjVrGDZsmCgkCVkuNTUVlUpFoUKFMDExISQkhODgYABcXV1RKpXyBjGGhobyveYPP/xA+fLlefbsmbyYsYmJiSgkCVkuOjoaSZJwdnbGyMiIsLAwzp49C4ClpSVKpZJLly6hVqvljAK0bNmSmjVrcvHiRVQqlfwwUxSSBCH7iWJSDrCysmLdunU4OjoyY8aMbxaUnj9/LheUNBV3gIIFC1K7dm2WLl3KpEmTePv2LRs2bADEyCQh65QtW5YJEyZQsWJFfH19/7SgNGPGDLmgpFarkSQJe3t7atasyerVq5kwYQKpqakcP34cQBQ8hf+Z5mYwOjqaHj16cPv2bWrXrs2uXbtYvXo1/fr1IzQ0lGHDhrFlyxb5eykpKQByTqOjozl79iz6+vp06tSJli1bAiKbwt/3ZUavX79O9erV2bVrFwsXLsTb25s7d+4wdepUli1bJn8vOjqa2NhYkpOTUSgUfPz4kVOnTvH+/XsqVKhAx44dAbE+opC17OzsiI+P58qVK1y8eJF27dqxY8cOFAoFbm5uGBkZsXPnTp4/fw5k3kHQ2toatVotdsYSspWnpycJCQmcPXuWu3fv0q5dO27cuIEkSTRp0gRzc3P2798v78KqnVEdHR309fXR09MTDzMFISflzuy6/OnTp09S586dpZo1a0rHjh2TkpOTJUnKvIZS586d5c8rlUpJkv6YL5yYmCj9/PPPUr9+/SSFQpHzByDkSdprfTx58kTq27evVLFixa/mpWuvofT69WtJkv5Yx0N7PY+ff/5Z6tKlSw60XMir0tPTJUmSpKioKKlOnTpSp06dpEuXLsmva5w+fVpq27at5O7uLgUGBsrfHT16tFStWjWpXbt2UpcuXaQyZcpIa9euzfHjEPIu7YzWrVtX6tSpk3Tx4sWvPhccHCzVq1dPcnd3l1atWiW/PmXKFMnd3V3q1q2b1LlzZ6ls2bLShg0bcqz9Qv4UEBAgubu7S+XLl5e6d+8uhYaGyu9t3rxZcnd3l/z8/KR79+7Jrz98+FBq3ry5NGLECHHvKWQbtVotJScnS+vWrZPc3d2lChUqSD179pRevHgh36du27ZNKlu2rDRq1Cjp1atX8ncfPXoktW7dWl6D7j+tYScIQtYRayblsJiYGIYMGUJYWBiTJk2ifv36X62hVKpUKQIDAwFIT09HX19f/v7cuXM5cuQIu3fvxs7OLrcOQ8jDnj59yvz587l9+zaLFy+mXr168nvaayhNnjwZZ2dneb0QjQULFnD06FECAwNFRoX/2cePH+ncuTNWVlZMnz4dNzc39PT05NEamsxduXKFWbNm8fLlS1avXk29evVQKpUsW7aMe/fuoa+vT/PmzenQoQPwx5p0gvB3ffr0iXbt2uHg4MDEiRMpX7488Md1W3NufPToEQMGDCAtLQ1/f395i/WlS5dy/vx5ChYsSMuWLeURSSKjQlbTZDEkJISWLVuio6ND69at8fX1xcHBQf5cQEAAixcvpmjRojRp0gSVSkVwcDCvX78mMDAQV1fXXDwKIT+4fv06ffv2JT09nbZt2zJ16lR5fa+YmBj27NnDihUrcHR0pHr16hgZGXH9+nUiIiJERgUhF4hiUg7SXMz/U0FpyZIlODs7s3v37kzfj4iIYPDgwRgYGLBhwwYsLCxy6UiEvEh7wez/VFDas2cPRYsWZcqUKRQvXlx+7+PHjwwcOJD09HS2b9+Oubl5jh+H8O+nVqvx8fHh9OnTjBgxgl69emFkZJQpo9od7sOHDzN69GgaNWrEnDlzMDc3R5IkJEmSpxRrfle78CkI/6v09HR++eUX9uzZw6RJk+jevTvwdSFIk7mgoCD69u3Ljz/+yOzZs+X309LS0NHRkReSFRkVskt6ejoBAQGEhoaip6fHoUOH8PLyonv37pnW6Dp69Chbt27l4cOHWFhY4OrqyqRJk3Bzc8vF1gt5nebcp1mf09ramv3799O7d2+GDBki308mJiZy+/ZtFixYwIcPHzAyMqJEiRJMnDhRZFQQcoH+f/6I8L/41k5WmhtEKysrVqxYwZAhQ5gxYwYA9evXx8zMjLZt26JWq5kxYwbHjx+nefPmmX5ToVAwc+ZMUUgS/rYvM6r9bw8PD0aOHMmCBQvw9fXNVFDy9vYmPT2djRs3EhISkqmY9P79e8zMzBg3bpwoJAn/M11dXfz8/AgLC2P79u0ULVqURo0aYWRkJHfWNZsQaJ6wnzlzhqtXr5Kamoq5ubn8Gc3C3JIkiU66kGX09PRo0aIFb968YcWKFbi6ulKjRo2vRhTp6uqiUqmoXr06jRs35siRIwwfPhw7Ozv09PQy7VYkMipkJ319fbp27Qpk3IdaW1uzceNG1Go1Xl5eODk5ARmLGdevX5+kpCQMDAwwMjKSz6OCkF00577Ro0eTmJiIUqnE2tqadevWIUkSw4YNw8zMDHNzc+rVq0e1atWIiYlBX18fc3Nz+aGRIAg5S4xMygbanfQNGzbw4sUL0tLSaNq0KdWqVcPS0hL48ylviYmJvH37Fnd3969+OzU1FWNj4xw9HiHv0c7ounXrCAkJ4fPnz3Tr1o1y5crJGX3y5AkLFiz45gil+/fvU6FChUy/q1AoUCgUopAkZImwsDC8vb1JTExkzJgxNGnSRN6uWtNp12R54cKFrF+/nsOHD1OiRIlcbrmQH0iSxJ07d5g9ezZv3rxh/vz51KlT508/v3jxYgICAjh79mymqUWCkBskSWLOnDls2rSJHj160KtXLxwdHQExQk7IHV+O7IyMjGTz5s1s2LCBXr16MXz4cExNTcVUYEH4BxFXiiymVqvlTrq3tzcrVqwgODiYu3fv8ssvvzB79myioqKAP0YoOTs7M2vWLM6dO0dycjLm5uZyIenL3VxEIUn4u77M6Nq1awkODiYiIoL+/fsTEBBASEgIAKVLl2bkyJFUrlyZkSNHcv78efl3NIUk7YwaGhqKQpKQZZydnQkICMDc3Jx58+Zx6tQpFAqFPCoJ/hhRpym0i62AhZyio6NDpUqVGDt2LC4uLowePZpLly796ec1Uy41638IQm7S0dFh3LhxeHl5sWXLFjZt2sS7d+8ARCFJyBVfFojs7e3x8vKiT58+bNq0iaVLl5KSkiIKSYLwDyKuFllMcwGePHkyT58+5ZdffmHHjh2cPXuWqlWrcurUKWbMmMGHDx+APwpKdnZ2jBkzho8fP37z9wQhq2gyNWXKFJ4+fcqECRPYunUrR44coU2bNuzevZstW7bw6tUr4I+CUrly5fD29ubt27ff/D1ByA6agpKZmdmfFpSePn1KUFAQLVq0wMrKCjHgVsgJmqfjnp6ejB07lmLFiv1pQenZs2dcvXqVli1bYmlp+dWDIkHIKv/XbI0fP55evXqxfft2Vq5cyfv377OpZYLwf2dnZycXlLZu3cqsWbNISUnJ7WYJgvD/iV5gNggODiYoKIg+ffrQoEEDLC0tuXv3LhcvXsTBwYHr16/j7+8vF46srKwICAhg3rx5FCtWLJdbL+QHd+7c4datW3Tt2pWGDRtSuHBhrl+/zunTp7G3t2fHjh3ymkjwR0Fp+fLl8jB4Qcgpzs7OrF69GnNzc+bOncvJkyflglJ0dDRHjx4lKSmJxo0bA18/3RSE7KC9bpdmhJKmoHTx4kX5czExMRw5coTExER++OEHQBThheyhUqnQ1dXl48eP3Lhxg8jIyP/qe+PGjeOnn37i5MmTGBgYZHMrhfzsr4qdf/YgSFNQ6tSpEydPniQpKSm7micIwv+RuJvJAl+e/CwtLSlWrBi1atXC3NycZ8+e0bt3b5o2bcq2bduoW7cup06dwt/fX77QW1tby4ttiyeWQlb71gW6dOnSNG3alAIFCvDkyRMGDhxIw4YNOXjwIN27d2f//v0EBgby4sULAMqXLy931kVGhaz0ZZ6+ldeiRYsSEBBAgQIFmDdvHmfOnCEqKooDBw6wceNGevbsmWlNL0HISl9mVPP3nxWUxowZQ1BQELGxsezZs4eNGzfi5eX1l2sqCcLfoVk/LiQkhH79+rFw4UJu3rz5X39/2rRpHD9+HBsbm2xspZCfaYqd0dHRXLhwgV27dnHr1i3i4+OBjPPpn91f2tnZMWjQII4dOyYyKgj/IGIB7r9Je5HC9PR09PX1USqVJCcnY2FhwcePH+nVqxdFihRhypQpODs78+rVK3r27ImhoSHFihVjxYoVYqcMIdtoZ1SzroxSqSQmJgY7Ozs5o46OjkyePJmiRYty/fp1vL29SUlJoWXLlkydOpWCBQvm8pEIeZGmAyRJEg8ePPhqUfcvhYeHy4tyV6pUiRMnTjB8+HAGDx4MiIVjhaynvWHBpUuXvlkQ0hSUtBfljoiIoHbt2hw5coRhw4YxaNAgQGRUyHqa/L169YquXbtSpkwZfvzxR9q2bZvbTRME4I/z3suXLxk+fDgfP34kISEBgHr16tGpUycaNWoEfL0QtyAI/1z6ud2AfzvtNZIKFSrEsGHDMDQ0lLeoDA0NJTY2lmHDhuHs7AxASEgI+vr6VK1alSpVqohCkpCtNBkdOXIk5cuXp3379hQsWBA7Ozsgo3MeExPD4MGDKVq0KJBRdPL09MTV1RV7e3tRSBKyjaaT3q9fPx4+fMju3bvlc+W3aEYoeXt7c+LECUaOHEn//v0B0UkXsocmo4MHD+bDhw9YWVlRtmzZTJ/5coTSuHHjmDdvHocOHcLX1xdvb29AZFTIHjo6OiQmJjJr1ixcXFzw8/OjXLly8vsKhQKlUomZmZk88lN01oWcpKury/v37+nbty/FihVj0KBB2Nra8ujRI5YsWUJoaCgpKSm0atVKZFMQ/kVEMSkLpKWl8eDBAz5//oy5uTm9e/fG0NAQyOiUx8XFyfN7P378SHBwMJUrV8bf3x99/Yz/CUQVXshOSqWSjx8/smTJEkxNTWnRooW869qHDx/4/PmznL+YmBguXLiArq4uEyZMkH9DZFTISl+O9nj//j3jxo3DysrqP363aNGirFy5kkePHtGiRQtAdNKFrKed0YcPH/L48WNGjhyJi4vLNz//ZUFp+PDhJCcny0/bRUaF7JSWlsbLly9p2rSpXEi6f/8+t2/f5sSJE5ibm9OjRw/q16+fuw0V8g3tkcc6OjqcOHEChULBwIEDqVWrFgDff/89ZcqUwcfHh9WrV+Ps7PwfRygLgvDPIYpJf5NKpcLIyIitW7fi4+PDtm3bAOSCkqOjIy4uLqxbt47g4GBSUlI4deoUY8aMkQtJIJ4QCdnLwMCAtWvXMmbMGGbNmoUkSbRs2RJzc3Nq1qyJg4MDS5Ys4ebNm8THx3Pq1CnGjh2b6TdERoWspOmkr127FgMDA6ytrWnZsiWGhob/VeGyWLFi8oYFopMuZAdNRufMmUPhwoUpVaoUP/zwA8bGxn/6He2CUo0aNeTXRUaF7JaWloa5uTlhYWE8e/aMoKAgAgMDiYmJoUSJErx8+ZJRo0bx22+/fTWyThCy0vXr13FycsLR0THTue/9+/ekp6dTunRp4I81lKpXr868efMYMGAAFy9eFMUkQfgXEXc2/0fp6emZ/tbT00OpVGJubs7SpUspWbIkW7duZf369aSlpeHq6sqkSZMoUqQIFy9e5Pnz54wdO5aePXsCf75zgSD8r77MKGTkzMjIiLlz51KnTh1mz57N0aNHiY2NxcLCgt9++w1zc3OOHz/Ow4cPGTNmDN27d5e/KwjZ4fr16yxYsIDZs2cjSZI8ovP/WrgUnXQhu5w7d46NGzeyaNEi+eHRt86x2r6VX5FRISt967rs4ODADz/8wPXr12nTpg2zZ8+matWqLF68mJ07dzJ16lTS0tLkXVoFITs8f/6cAQMG4Ovry/v379HV1ZXPmaampiQmJhIRESF/XkdHh/T0dOrWrcv333/P8ePHSUxMFPeegvAvIRbg/h9t3bqV77//Hjc3NyBjGpGBgQFJSUkMGzaMx48f07t3b7y8vDA2Nubjx4/o6uqSlpaGg4MDIJ5UCtlr27ZtNGnShMKFCwN/TFNLS0tj9OjRXLp0iXHjxtG0aVMKFSqEQqHg8+fPAPJ6SiKjQnZKTEzkzJkzBAQE8OnTJ1atWkWVKlVyu1mCIFOpVGzatInAwEDi4+MJDAzE1dU10xQ4QcgpKpUKyHiQGRMTQ0REBAkJCVhYWMhT265cucLHjx8pXbo0Tk5O8hqeZ86cYerUqcycOVPsfClkq7lz53Lw4EFKlCjB3LlzKVKkCACvX7+mW7dueHh4sH79euCP/hNAnz59iI2NZd++fbnWdkEQ/m9EL/F/8PvvvzNjxgw2bNjAq1evgIxpRJrFDVeuXIm1tTVr1qxh06ZNpKamUrhwYaytreVCkiRJopMuZJvLly8zffp0Fi1aRExMDPDH9AsjIyNmzpxJuXLlWLp0KadPnyYmJgZDQ0Ps7OzkQpLIqJCVvrXdr7m5OQ0aNGDgwIHo6+szf/58wsPDc6F1gvDtjOrp6eHl5UXXrl1Rq9V4e3sTHR2Nnp6e3LEXhOx26dIlIiMj0dPTQ09Pj5cvX9KjRw/69etH37596dGjB5MmTSI5OZlatWrRtm1b3N3d5ULSvXv32LFjB1ZWVpQpUyaXj0bIqzTnxDFjxtCxY0eeP3/OmDFjePfuHQA2NjZ07tyZK1euMGjQoEyFpAcPHhAVFYWrqysKhUKMTBKEfwkxMum/8K0nkJs2bWL27Nm0bduWAQMGUKJECSBjzrqRkREnT55kwoQJWFtb07x5c3x8fETHXMg22hmVJAmlUsn+/fvx9/enZcuWjBo1Cmtra+CP0UZbtmzB398fCwsLhgwZQpcuXeSLuiBkpfT0dHmNuNevXxMdHY21tTV2dnbysPfTp08za9Ys3N3dmTVrFk5OTrncaiE/0c7oq1ev+PTpE46OjhgZGWFtbU16ejpbtmxh1apV2Nra8ttvv2FtbS1GKAnZ7tGjR/z000+sW7eO2rVr8+bNG7p164arqyvt2rXDxcWFc+fOsXr1ajp37sy4cePkdb1SUlLYs2cPx44d4/Xr12zatAl3d/dcPiIhL1MoFPKU9cWLFxMYGEipUqWYPXs2jo6OREVFsWHDBrZu3UqxYsVo0KABKpWKW7du8ebNG3n0pyAI/w5iAe7/guZGcfLkybRp04YqVarQq1cvAGbPng0gF5SMjIyAjOkbRYoUwcDAAEdHR1FIErKVJqNTpkyhW7duuLu707ZtWyRJYsaMGQCMHj0aKysrOYuWlpbUrl0blUqFjo6OKCQJ2UKlUsmd9NGjRxMUFER0dDQGBgZ4eHjg7+9PqVKlaNq0KQCzZs1i/Pjx8o2nIGQXzdRf7YyOGTOGq1evEh0djbGxMZUrV8bLy4u6devSo0cPJEli9erV9OzZk82bN8uFJu0NNQQhKzk6OmJoaMj9+/epXbs2Bw4cwNzcHF9fXypVqgTAkSNHMDIyokyZMpnuN7dt28by5cupVKkSW7duFZ10IcudOXMGtVpN0aJFKV26tFxIAvD19UWSJHbs2MHYsWOZPXs2Tk5O9O/fnzJlyrB9+3a2bt1KgQIFKF68ONu2bRMZFYR/GTEy6b/05MkT2rVrx5o1a6hbt678umaEUps2bejZsydly5bl48ePrFy5EisrK4YNG5aLrRbyk1u3btG9e3eWL19O48aNgYwnRPv27WPGjBm0bt2aQYMG4ezsTExMDPPnz8fIyIipU6fmcsuFvOTWrVs4ODjIU3o1fHx8uHXrFu3bt6dq1apcuHCBM2fOkJqayrx586hbty4JCQmcOXOGefPm4ezszLx58yhatGguHYmQVwUFBWXaaU1j+PDh3L59mw4dOuDu7s6DBw84cOAASqWSadOm0aJFC3mE0rp16zAzM2Pbtm3yunSCkNUkSSIpKYmuXbtSvHhxlixZQt++fQHkNWfmzp3Lb7/9xi+//ELz5s0xNzcnJSUFExMTAIKDgylevDiWlpa5dhxC3hQUFETv3r0BsLW1pUKFCtSpU4f69etjZWUlP6RcunQpmzdvxsPDQy4oabqfz549w9LSElNTUwoUKJBrxyIIwv9GPEr7L6jVagoWLIihoSFv374F/hgS36tXL3R0dFi4cCFPnjyhSpUqREdHc+7cOSZNmiT/xn+z1bUg/B1FihTB0NBQnpsOYGhoSPv27dHT02PGjBm8ePGCChUqEBcXx8mTJ/n111/lz4qMCn+Xpri+fv16ihQpIufp1q1b8hoJXbp0wdTUlFq1alG/fn2WLFnCmDFjCAwMpHjx4vzwww+o1WomTpzIo0ePRDFJyFJbt25lxowZrFixgkaNGsmv37x5k2vXrtG/f3969OiBsbExLVq0oHLlyixfvpxff/0VS0tLatSoQc+ePVGr1cybN48rV67Qtm3b3DsgIU/Svh6bm5vLI5ISEhIoWLCgvFnG/Pnz+e2335g6dSqtW7eWp7eNGjWKevXq0alTJzw9PXPtOIS8S61WExsbi5ubGy9evJD/e+nSJWbNmkXdunWpVasWzZo1Y/jw4RgZGbFlyxbGjh3L3Llz5ZHHHh4euXwkgiD8HWLu1Td8ue2vrq4ujo6OFCtWjKtXr6JWq9HT05Or6l5eXsycORMrKytOnjzJo0ePGDlyJD///LP8G6KTLmSlb21NbWdnh6OjI48ePQL+WAjR0NCQjh07snbtWhQKBSdPnuTWrVuMHDmSn376Sf6+yKjwd9y5c4fVq1czYMAA3NzcMuXp3bt3JCYmUqdOHUxNTVEoFOjp6VG7dm159Ob06dNRKBSYm5vTrFkzjh49SrNmzXLrcIQ86P79+yxdupQBAwZQoUKFTO+9e/eO+Ph46tati7GxMQqFAoDGjRszaNAgVCoVu3btIikpCT09PXr16sW+fftEIUnIFprzp2ZR+KJFixIbG8vnz5/x8PDgyZMn+Pj4sGnTJqZNm0arVq3kQtLx48cJDQ3FyMhILGIsZBtdXV0aNGiAj48PJUqUkEe8r1y5km7duvH8+XOmTp1K06ZNGT58OC4uLlSoUIF3794xceLETA8+BUH49xIjk75Bs/bB9u3b5SKSi4sLRYoUITY2NtN8dM1OBC1btqRGjRqoVCpSUlJwdnYGxNbqQvbQZHT//v0UKlSISpUqUahQIUqVKkVISEimBRAho7BUrVo1tm3bRkpKCmlpafKID5FRISskJiaiUCgoVaoUtra2QMbwdXd3d3ka0OPHjylVqhSGhoZy7urUqUOtWrUICgoiMTERKysrzMzM5HUTRD6FrPLx40fS09MpX768nMlbt25RpUoVeder+/fvf5XRpk2bcvnyZU6dOiV37vX09ORdsURGhaxy+PBh9u3bx/fff0/FihVxdHSkaNGi1KhRg8KFCxMUFETfvn05duwYJ0+epHv37jRu3BhTU1MgY7Hu3bt3Y2pqSvXq1cVDIiFbGRsbU6dOHQB+/fVXpk6dypw5cxg9ejR9+vTh7du37Nmzhxs3bnD16lW5j/T+/XumT5/O8uXLxQYGgvAvJ4pJf2Lt2rUsWLAAyBjZ4ejoSFpaGp8/f2bnzp1Uq1YNW1tb+UkQgJWVVabfEFurC9lpw4YNzJ07F8goLtnY2KBWqzE0NGTbtm00btwYY2NjChcuLF+sCxQokGlOusiokFUMDAxISkri4cOHVK9eHT8/P+Lj49m0aRO2trZYWVmxd+9ePDw88PDwQFdXV54uXLZsWU6ePElSUtJX51GRTyGrODo6kpyczN27d2ncuDF9+vTB0NAQNzc3PD09sbS05MSJE9SpUwd7e/tMGbWzsyMxMZHExMSv1vUQGRX+LkmSSE1N5fz583z8+JHffvuNxYsXY25ujru7O/b29nz69InXr1+jr6/P9OnTGTduHMePH8fU1JQffviBoKAgLl68yPPnz9m2bRt2dna5fVhCPmBkZETdunWZOnUqM2bMwNfXl8WLF+Pm5oa1tTXlypVDV1dXHjG3a9cuDAwM8PPzE4UkQcgDxALcfyI1NZWoqChiYmJ49uwZDx484NOnT5w7dw4AExMTChYsSOnSpSlZsiQ2NjbyDm+CkBM+ffpEWloa8fHxXLt2jcjISIKDg7l//z6FChUiOTkZa2trypYti42NDWXLlqVNmzaZRiwJQlZatWoVS5YswcHBgZSUFGbPnk3NmjUxMDBg586d8roeffr0oXTp0kDGaJHp06cTFhbGxo0bxSKxQraQJAlJktiwYQMLFizAwcGBhIQEZs2aRe3atTEyMmLfvn1MmTKFli1bMmzYMJycnACIjo7G39+fV69eyRkVIz6E7KAZ5RYWFsbr1695+vQply5dIikpicePH2NiYsKcOXNo0qQJYWFhTJw4kXv37qFQKChQoAAeHh5MmTIFNze33D4UIZ9RKBRcvHgRf39/zM3NWbBgAaVKlfrqc5GRkRgaGn714EgQhH8nUUwiYwrQf1Mdv3DhAmPHjqVv374UKlSIhw8f8uzZMx4/fsyIESPkHQ0EIav9txm9fv06Xl5e+Pj4YGVlxYsXLwgODubt27cMGTKEnj175kBrhfxGe5pPrVq1+Pz5M/Xq1WPs2LG4uLjIn9MUm8qUKUPbtm3laRt79+5lwoQJdOvWLZeOQMgvYmNjadeuHe/fv6dRo0b4+/tTqFAh+b0dO3awYsUKypcvT4MGDXB0dOTy5cscPHhQZFTIdt/aCEOSJFJSUrh48SLLly8nISGBcePG0bx5cwBevHjB58+fcXJy+mr0sSDkpP9UUBIbvQhC3pPvi0nanfQDBw7w5s0bjI2NKV68OE2aNAH+2LktKSmJpk2b0r59e/z8/OTfSExMxNzcPFfaL+R9mvwB7N27l7dv36JUKqlevTqVKlXC1NQUpVKJvr4+sbGx/Pjjj3Ts2JHhw4cDGRf3tLQ0cYMpZLt9+/axYcMGHB0duXDhAr169aJ79+7yCA/NZwICAggLCwMydiH08vKSR3aKm00hO2hytXnzZjZt2kSZMmU4c+YMffr0YfDgwfI1PD4+nsuXLzN37lwiIyMBcHBwoGfPniKjQo77cj2u33//nfnz55OcnMyYMWNo2bIlIDIp/HN8WVBauHChGCknCHlYvi4maV+kvb29uXHjBsbGxqSlpaFWq2nYsKG8bpLmyVDPnj0pXLgwq1atkn9DR0cHHR0dsQinkOW+zGhwcDCGhoYoFAoMDAyoVq0aU6ZMyTQ1qGPHjlhYWLBu3bqvfk/ccArZKSoqisTERJycnFi0aBEbN26kR48eeHl5ZSooffjwgdjYWNLS0ihUqJDYsEDIMWlpaYSHh2NkZMSuXbtYu3YtvXr1YtiwYfIi3AAJCQmEhIQgSRKWlpbyCDuRUSE3aF+7f//9dxYsWEBaWho+Pj78+OOPudw6QchMU1CaPXs2SqWSDRs2yJtqCIKQt+TrBbg1N4RTp07l4cOHTJ06lcaNG6Ojo8OECRM4evQodevWpU2bNujo6GBqakrlypU5deoUcXFxWFhYZLqpFDeYQlbTZGrKlCk8ePCAyZMnU61aNezs7OjTpw/Hjx+nevXqdOrUSV5Mu3z58ly6dAmVSoWOjk6mXIpCkpCdbG1t5Z3cxo4di1qt5rfffgOgV69eODo6yp/7cnFYsRi8kN3UajVGRkaULFkSgG7duqFSqdiwYQMAw4cPx9TUFLVaTYECBahYsWKm74uMCrlFR0dHLig1atQIXV1dJk+ezJo1a2jYsCFmZmbi+i78YxgaGlK3bl0UCgWrVq0Sa3UKQh6WL4pJfzUaIy4ujnv37tG6dWv5gnz37l0uXLhAx44dqVy5cqbPW1tb8/79e1JTU7GwsMiJ5gv5wJcZ1f7748eP3L9/n59++knO6IMHDwgODqZTp07UqVNHHh0HULJkSbZv3050dLTcsa3RbcgAACgQSURBVBeE3DB+/HgAuaDUu3dvHBwcvnk+Fh0hIbt9WQiyt7fHy8sLQC4o+fj4YGJi8s3vi4wKuUm7oNSgQQP8/f0pXry4WGZB+EcyNDSkcePG1KtXL9OoT0EQ8pY8/4hNMw1NoVAQExPz1fvR0dE8ffqUKlWqUKBAAYKCgujVqxcNGzZk6NCh8tSMGzduAFC2bFl+/fVXseWqkGW0M6pZo0O70xIfH09oaCgeHh6YmZlx7do1unfvTqNGjRg6dCgODg4A3LlzB4VCQeHChZk8eTJ2dnai8yNkObVa/X/6/Pjx4/Hy8mL79u2sX7+e8PDwbGqZIPzf2dnZ4eXlRZ8+fdi6dSsLFiwgKSkpt5slCN+kKSgB1KtXT54iLAj/RIaGhqKQJAh5XJ4uJqlUKnR1dYmNjWXGjBl069aNmzdvor1MlLm5Oba2tkRHRxMUFIS3tzeNGzdm7NixcsHozJkzzJw5k9evX1OjRg1+/vln4P/eqRKEL2lndM7/a+/ew2s68/6Pv3fOkjgFOUiIQwmjUm08TdEosjVGTYL2qglFpOrUIookRMc1qho1SCmtp49DU8pjtKGIUrQ8FA1tqENa0lFKGgmRTILsJDu/P/z2HkErSIT4vP6z91pr3+u6vlfs9dn3/b1nziQyMpLNmzeXOcbOzg57e3vMZjPHjh1j+PDhdO/enZiYGOvMo+TkZP7xj39w7tw5unfvbt1xSDUqFclSrwDp6emcP3++XOdNmjSJ8PBwVqxYYQ1MRSrDzf7m3ao1pCVQGjhwIMuXL+fo0aOVNTyRu6YfiURE5H5RbZe5mc1mbG1tyc7OZujQoZjNZlq2bEmzZs3K/Efs4eFBq1atSEhI4NKlS3Tv3p3Y2Fjq168PwNmzZ0lOTqZ27do4OjqqR5JUmGtrNDIykpKSEh5//HH8/f3LHOfr60uXLl144403KCoqok+fPowaNcoaJGVkZPD111/f0B8JVKNSca7d+XLKlCmcOHECo9HI4MGDsbe3v+X5U6ZMoUePHrRv376yhyoPqWt3vjxx4oR1p9WmTZtaa/f3GmhbAiWj0XjD8nYRERERuVG1DZMssz0iIiKoUaMGI0aMoFu3bhgMButDkeWL54QJE5g8eTI//vgjPXr0sE7JPHXqFOvWrWPHjh3ExcXh5eVVxXcl1YmlRiMjI3F0dGTUqFF06dKlzM6Alv4IYWFh/Otf/+LHH38kJCTEWounT58mKSmJ7du3M3nyZOuSN5GKVFpaan0YHz58OGlpaYSGhvLcc8+VK0iysARJ2hFLKlpJSYk1SIqNjWXfvn1kZGTg5ORE9+7dCQ0NJSgoCBsbm9+tP09PTzw9PQHVqIiIiMitGEpvNf/7AWR5AJ8/fz6bNm3ijTfeIDAwEBsbmzK/rl97/Ndff83bb7/Nv//9bwICAvD09OSHH37gxx9/ZNSoUQwbNqzMtUUqwrx589i4cSNTp06lY8eOADetUYB169Yxf/58srOzMRqNODo6kp6eztGjR3nttddUo1Lp5s6dy5o1a5gyZQpBQUFlGr8WFRVZgyXVoFSVMWPGkJKSwgsvvICXlxenT58mMTERHx8fXnvtNf7yl79U9RBFREREqoVqOTPJ8hCTmppK3bp1+a//+i/rL4y2trYUFRWxYcMGjh8/Tp06dWjfvj1du3alefPmJCQkkJaWRmpqKgEBAQwYMIDQ0FBAv1RKxfvhhx9wd3enY8eO1gdwGxsbTCYTGzZs4OTJk9SoUYNu3boRFhZG06ZNSUpKYvfu3RQXF+Pv7094eDhhYWGAalQqj8lkIjU1lUcffZQePXpgMBjIycnh2LFjbN26FbPZzLPPPkvHjh0VJEmluTaovP7v3Y4dO/j2228ZMWIE4eHhODo6AtC5c2eioqJYuHAh7u7uBAYGVsnYRURERKqTahkmWeTm5uLk5GSd+g6wdu1akpKS2Ldvn/U1V1dXJk2axPPPP8+cOXO4dOkSxcXFuLi43LLPgsidKikpoaioiPz8fOsDUlFRERs3bmTdunXs2bPHeuyaNWt49dVX6du3L/7+/pw/fx4HBwccHR1xcHAAVKNSuUpKSjCbzRQUFHDu3Dlyc3OZOXMmR44cwWQyYWtry5o1a1i2bJn6IkmlsPydzMvL48qVK7i7u5f5u3fhwgVyc3Np164djo6O1mbcHTp0ICEhgSFDhrB582YCAwM1e05ERETkLlXLJ0/Lyr2ePXuyf/9+YmNj2bx5M6NGjWLSpEmcOHGC0aNHs2zZMmbOnMmVK1eYO3cuaWlpADg7O1OrVq0yS430kC4VzdbWlscee4x//etfREdHs3PnTsaPH8+kSZP46aefGD16NAsWLOAf//gHBQUFZbZVr1evHjVr1izTr0Y1KhXlZjti1ahRg6CgII4ePUpoaCihoaHk5eURGRnJd999x8KFC3F1dWXXrl3ArXfQErldBoOBy5cvM2TIEF5++WUyMjKwsbGhuLgYuDp7rrS0lOzsbOBqDVqWt3fo0IGwsDA2bdpEZmamgiQRERGRu1QtZyZZviSGhIRw8uRJNm7cyNq1a3F2dqZjx4787W9/w9fX13p8fn4+b775JpmZmbRq1aqqhi0PoZEjR3Ly5Em2bNnC+vXrcXJy4qmnnuLvf/87jRs3th534cIFZsyYweHDh2nUqJH1dT0Qyd26ftmQ2Wy2zubMzMykoKAAJycnGjZsyLBhw3B3d+fUqVM0aNCALl26WJvBu7m5YW9vT+3atQHVplSOGjVq8MQTT5CcnEx0dDTvvPOOtQaNRiOLFi0iMTERo9FYZqMNgDp16lBUVHTTnnQiIiIicnuqZZhk4e3tTVRUFAMGDODYsWO0bt0aX19fnJycKCkpwcbGBoPBgJOTE4C1v4LIvVBSUoKTkxOzZs3i0KFDZGdn06xZMxo3boyTk1OZhyDLw0+9evWqcshSzViCpIsXL1JYWIiHh4d1htukSZP4/vvv+eWXX/Dy8qJbt25MnjyZ3r1733Cds2fPsnHjRkpKShTIS6WxLGmLi4vDxcWFlStXlgmUXFxcCA8PZ/bs2YwaNYqFCxda/4ZmZWWRkZFh/SFJy9xERERE7k61DpPg6q/lbm5u+Pn5WV+79iE9KyuLvXv34uvri4eHR1UNUx5Ctra2mM1mHBwcbugxc22NZmZmcuDAAZo2baowSSqUwWCgoKCAPn368Ne//pXhw4cDV2fMHTx4kNDQUJo3b87Ro0dZvnw5WVlZTJ8+nZo1a1qvkZKSwoYNG0hKSmLMmDF06NChqm5Hqplr+yFZlqyZTCYcHByIiooCsAZK8fHxeHt7ExYWRnZ2NomJifTr14++ffvi5OTEgQMH2Lp1K1OmTKF+/fpVeFciIiIi1UO1CJOubzx8q18cLQ/pZ8+e5bPPPiM5OZnJkyfTtGnTSh+rPJyur1HLv6/vc2Sp3WtrNCkpic2bNxMXF0fz5s3v6bil+nN2dqawsJAzZ84AkJyczMGDB4mNjaVbt264urqydetWVq5ciYuLCyUlJdZzt2/fzujRo2nUqBHR0dG89NJLgJrBy92z1FBOTg4nT57E29sbd3d364YDAFFRUZSWlrJq1SpiYmKIj4/Hx8eHoUOH0qhRIz755BOmTp2KnZ0d7u7uTJw4kf79+wOamSQiIiJytwylD3iX1JKSEmxtbSktLeWHH37A39+/XOetX7+er776it27d/Pyyy8zbNgwQF8wpeJZahTg//7v/wgKCrrlOSaTia+//prk5GS++eYbhg4dqhqVCmcJhl599VUuXLjA6tWrmTdvHmvXruXzzz/H1dWVvXv3MmLECEJCQhg3bhyenp5lrpGcnIyPj4/1b6+CJKkoeXl5dO3alYKCAlq3bs1jjz2G0Wikbdu21t5cAAkJCaxYsQI/Pz9roFRUVERRURH79u2jVq1a1KxZk5YtWwKqUREREZGK8MDPTLI8pA8dOpTDhw/zz3/+s0zj4utdvnyZTz/9lPfee4+mTZsSGxtLnz59AH3BlMphqdFRo0aRmZmJm5sbbdq0+d3jS0tLWbZsGQsWLKBt27Zl+tSoRqUiWWqzc+fOTJ8+nYyMDGtY6erqyv79+xkxYgRGo5Hx48fj7u4OwJIlSwCIjIykZ8+e1utZliKJVIRDhw7h5uZGQUEBxcXFbNq0ic8++4zatWvTq1cv2rVrR0hICFFRUTg7O7N06VJiYmKYOXMmPj4+2Nvb07Vr1zLXVI2KiIiIVIwHNky6frZHRkYGsbGxuLm5/eF5NWrUoGvXrrRo0YKGDRtad8bSQ7pUtGtr9PDhwxw9epTx48fTpEmTPzzPYDAwePBgWrVqRdOmTVWjUiGurcfrX/P29sZsNnP69GmaNWtGbm4uCxYs4H/+53949tlnywRJaWlpfPHFFwQGBlr711hoxpxUpPbt2xMTE8O7775LUVERCxYs4OTJk6SkpJCUlMTSpUvx9fWlU6dO9O7dmxMnTnDgwAHi4uKIj4/Hy8vrhpmcqlERERGRivHAL3P78MMPsbe3Z9u2bSxevBgHB4fbXgakZUNSmWbOnEmDBg3Yu3cv8+bNs+4e+Htu9tCvGpWKcP78eRYtWkRAQABNmjTBx8cHFxcXrly5QlhYGEajkYkTJ9KnTx+OHTtGYGAgM2bMwNvbG7i6YcFHH33Exo0bmTZtWrmWbIrcjcLCQnbu3Mm0adPw9PRkxowZtGjRgvT0dE6dOsWqVas4ePAgRUVF1KpVi5ycHK5cuUKbNm34+OOPcXZ2rupbEBEREamWHtiZSQD79u1j9uzZwNVfMC2/kN/uQ7ce0qWyfPXVVyxduhR7e3uefPJJHB0dy+zUdjPXB0mgGpW7ZzabSUhIYN26daxcuZLS0lJ8fX1p2bIlfn5+FBcXc/bsWQBmzJhBdHQ06enpfPnllzz33HOkp6ezbds2VqxYQXR0tIIkuSccHR155plnmDp1KtOnTycqKoqEhARatGhB8+bN6dSpEyaTibVr13L8+HHWr18PQK9evRQkiYiIiFSiB3pmUn5+Plu3buWDDz7g/PnzvP/++zdssS5SlUpKSli2bBkrV64kLy+PlStX0rx585vOPhKpbAUFBbi4uJCSksLJkyc5cOAAqampFBcX8+uvv2JjY8PcuXMJCQnh+PHjxMbGcuTIEeBqoOnl5cWgQYOIiIgANGNO7h2TycTOnTt56623cHV1Zfbs2daG2tf6+eefycnJISAgAFCNioiIiFSWByZM+r1+Mbm5uWzfvp133nkHX19fZs2aZe0xI3Iv/V6NFhcXk5iYyMKFC6lbty4rV66kfv36CpTknrvZg7XJZOLs2bOkpqby/vvvYzKZiImJoUePHgDs2LGDrKwsPDw8cHd3x8/PD1APL7n3bhUoXV/fqlERERGRyvNAhEnXLgs6efIk2dnZ1KtXDw8PD5ydncnPz+fLL7/k7bffxs/Pj7fffhsfH58qHrU8TK6t0Z9//pnz58/j7e2No6Mj9erVo7i4mI8//pj3338fd3d3PvroI+rVq6dASarU9Q/b27dvZ9asWRQUFBAdHU2vXr1uep5me0hVuT5QmjNnDi1atKjqYYmIiIg8dO77MOnah+2JEyeyZ88esrOzsbe3p1WrVrz11lu0bNmSS5cusXnzZmugFB8fb20aK1IZLA/U19ZodHQ033zzDdnZ2Tg5OREQEMDgwYPp3LmzdYbSokWLqF+/PomJidag6Y96KIlUtmvDoW3btjF79myuXLnChAkT6NmzZxWPTqQsS6AUHx+PnZ0dCQkJtGrVqqqHJSIiIvJQue/mf+/fv9/aBBb+04x47NixfPPNN/Tp04f//u//5sUXX+TcuXMMHDiQnTt34uzsjNFoZNKkSaSnpzN+/HhOnz5dVbch1diePXuA/zTFttTomDFj2L17N88//zxz5swhPDyco0eP8vrrr5OcnIydnR2DBg1ixIgRXLx4kfDwcLKyshQkSZUzGAxYflcIDg5mwoQJ2NraEhcXxy+//MJ9/puDPGQcHBzo3Lkz0dHRZGVl8dNPP1X1kEREREQeOvfVU+yyZcuIj49n8eLFeHl5WR/W9+/fz+7duxk5ciTh4eE4OzvTqVMnunTpwrvvvkt0dDQrV66kadOmdO/eHbPZTFxcHEeOHFH/JKlQy5cvZ/r06SxYsIDg4GDr6ykpKezdu5dXXnmFgQMH4uTkRM+ePQkICOC9997j73//O3Xr1qVDhw4MGjQIs9nMrFmz2L17N7179666GxL5/yyBksFgoFu3bphMJgoLC/H19a3qoYncwMHBgS5durB27Vr9Py8iIiJSBe6bMOn7779n0aJFDBs2jBYtWpTpx3H27Fny8/MJCgrC2dkZk8mEg4MDTz/9NGazmZiYGN58800++OADXF1d6dGjB+3ataN58+ZVeEdS3Rw6dIh58+YxbNgw/P39y7x39uxZ8vLy6Ny5M05OTtYaNRqNlJSUEBcXx+rVq/H398fFxYWIiAg6dOjAn/70pyq6G5EbXRsoWRpwgxoZy/3JwcHBGiSpRkVERETurfvmm1d+fj4mk4mWLVvi7u4OwI8//ghAgwYNADh69Chw9Quk2WzGYDAQFBREp06dSEtLIz8/HwAXFxdrkGQ2m+/1rUg1lZWVRXFxMW3btrXW5P79+4GrNQdXA6fS0lJrjQKEhITw5z//mW+++cb6mq2trTVIUo3K/eRmjbX1kC73O9WoiIiIyL1133z7sre3p6CggMOHD5Odnc2gQYOIiYnh4sWLuLu74+bmxqeffkpaWhpw9YtjcXExNjY2tGnThry8PAoKCm64rr5gSkXx9vbm0qVLpKamUlpaypAhQ/jwww/Jzc3liSeeoG7dunzxxRdkZmYC/6lRAA8PD/Lz862B57VUoyIiIiIiIvIguW+eYp966inGjh3LsmXLePHFFzl+/Djjxo2zzjIaO3YsKSkpLF68mGPHjgFgZ2dHVlYWqampPPLII7i6ulbxXUh1VVpaSsuWLZkwYQJLlizBaDRy5MgRXnzxRZycnHBzc2PixIns27ePuXPn8uuvvwJXazQ7O5v09HQeeeQRHB0d1cxYREREREREHmj3Rc8kS6+DkSNHsnz5cn777TeeeeYZfH19sbe3B6Bfv35cuHCBd999l/T0dHr37k2DBg3Ys2cP27ZtY/LkydStW7eK70SqK4PBgMFg4IUXXmDFihWcOXOG4OBgAgICcHR0BKBbt26cO3eOBQsWcPr0abp27Yq3tze7du1iy5YtTJ48GTc3tyq+ExEREREREZG7Yyi9j6ZJfPbZZyxZsgRvb2927NhBREQEL730Ej4+PmWO+eCDDzh16hQAXl5eDB48mIiICABr81iRimSpq8TERJYtW8af/vQntm7dSmRkJKNGjbLOisvLy2PXrl288847/PbbbwA0bNiQQYMGqUZFRERERESkWrivwqRz586Rn5+Pj48Pc+fOZenSpQwcOJDBgweXCZQyMzO5ePEihYWF1KlTh8aNGwPazUUqX2FhIadPn8bR0ZHVq1fz4YcfEhERwejRo61NuAH+/e9/k56eTmlpKXXr1qVJkyaAalREREREREQefPfFMjcLd3d3605uMTExmM1mPvroIwAiIiLw9va2Hufh4VHm3NLSUj2kS6Uym804OjryyCOPADBgwABKSkpYsmQJAGPGjMHZ2Rmz2UzNmjVp165dmfNVoyIiIiIiIlId3Fdh0vUmTZoEYA2UhgwZQsOGDW+6REjLhqSyXR8EeXp6MnjwYABroDR27Fhq1Khx0/NVoyIiIiIiIlId3PMw6XaX+VgCpeXLl2M2m4mIiKBRo0aVNTyR2+Lh4WENlBITEykuLrbuQigiIiIiIiJSHd3TNTclJSXWICk9PZ3z58+X67xJkyYRHh7OihUrrE2NRSqD2Wy+4bVbtRWzBEoDBw5k+fLlHD16tLKGJyIiIiIiIlLl7lkD7pKSEmxtbQGYMmUKJ06cwGg0MnjwYOzt7ct1jf3799O+ffvKHKY8xIqLi7GzuzpZ78SJE+Tn5+Pq6krTpk2ttftHM+t+++03zpw5Q0BAwD0bs4iIiIiIiMi9dk/CpGu3Qh8+fDhpaWmEhobSv39/vLy8bvt62hFLKtq1YWdsbCz79u0jIyMDJycnunfvTmhoKEFBQUD56k81KiIiIiIiItXVPemZZAmS5s6dy+HDh5kyZQpBQUG4urpajykqKrLOULo2fLoZPaRLRbMESWPGjCElJYUXXngBLy8vTp8+TWJiIocOHeK1117jL3/5S7nqTzUqIiIiIiIi1dU9a8BtMplITU3l0UcfpUePHhgMBnJycjh27Bhbt27FbDbz7LPP0rFjR+16JZXm2qDy+tlDO3bs4Ntvv2XEiBGEh4fj6OgIQOfOnYmKimLhwoW4u7sTGBhYJWMXERERERERuR/cszCppKQEs9lMQUEB586dIzc3l5kzZ3LkyBFMJhO2trasWbOGZcuWqS+SVApLkJSXl8eVK1dwd3cvEyhduHCB3Nxc2rVrh6Ojo7UZd4cOHUhISGDIkCFs3ryZwMDAW86eExEREREREamuKmUtzs12xKpRowZBQUEcPXqU0NBQQkNDycvLIzIyku+++46FCxfi6urKrl27gFvvoCVyuwwGA5cvX2bIkCG8/PLLZGRkYGNjQ3FxMXB19lxpaSnZ2dnA1Rq0sbGhpKSEDh06EBYWxqZNm8jMzFSQJCIiIiIiIg+tu56ZdP2yIbPZbN0RKzMzk4KCApycnGjYsCHDhg3D3d2dU6dO0aBBA7p06WJtwO3m5oa9vT21a9cG0MO6VIoaNWrwxBNPkJycTHR0NO+88461Bo1GI4sWLSIxMRGj0YitrW2ZHd7q1KlDUVGRtb+SiIiIiIiIyMPorsIkS5B08eJFCgsL8fDwsC4ZmjRpEt9//z2//PILXl5edOvWjcmTJ9O7d+8brnP27Fk2btxISUkJrVq1upshifwuy5K2uLg4XFxcWLlyZZlAycXFhfDwcGbPns2oUaNYuHChNUjKysoiIyMDX19f4NZN4kVERERERESqq7sKkwwGAwUFBfTp04e//vWvDB8+HICRI0dy8OBBQkNDad68OUePHmX58uVkZWUxffp0atasab1GSkoKGzZsICkpiTFjxtChQ4e7uyOR/+/afkiWJWsmkwkHBweioqIArIFSfHw83t7ehIWFkZ2dTWJiIv369aNv3744OTlx4MABtm7dypQpU6hfv34V3pWIiIiIiIhI1brrZW7Ozs4UFhZy5swZAJKTkzl48CCxsbF069YNV1dXtm7dysqVK3FxcaGkpMR67vbt2xk9ejSNGjUiOjqal156Cbhxly2R22WpoZycHE6ePIm3tzfu7u44ODhYj4mKiqK0tJRVq1YRExNDfHw8Pj4+DB06lEaNGvHJJ58wdepU7OzscHd3Z+LEifTv3x/QzCQRERERERF5eBlK76LTtSUYevXVV7lw4QKrV69m3rx5rF27ls8//xxXV1f27t3LiBEjCAkJYdy4cXh6epa5RnJyMj4+Pvj7+wMKkqTi5OXl0bVrVwoKCmjdujWPPfYYRqORtm3bWntzASQkJLBixQr8/PysgVJRURFFRUXs27ePWrVqUbNmTVq2bAmoRkVEREREROThdlczkyyNiDt37sz06dPJyMiwzthwdXVl//79jBgxAqPRyPjx43F3dwdgyZIlAERGRtKzZ0/r9SxLkUQqwqFDh3Bzc6OgoIDi4mI2bdrEZ599Ru3atenVqxft2rUjJCSEqKgonJ2dWbp0KTExMcycORMfHx/s7e3p2rVrmWuqRkVERERERORhV+6n4muXp13/mre3N2azmdOnT9OsWTNyc3NZsGABr7zyCs8++ywTJ060BklpaWl88cUX5OTkYDKZylxPy4akIrVv356YmBhatGhBUVERCxYs4G9/+xsdO3YkKSmJsWPHEhISwrRp03jqqacICgrit99+Iy4ujoyMDOBqeHQt1aiIiIiIiIg87G5rmdv58+dZtGgRAQEBNGnSBB8fH1xcXLhy5QphYWEYjUYmTpxInz59OHbsGIGBgcyYMQNvb2/g6o5YH330ERs3bmTatGkEBQVV2o2JABQWFrJz506mTZuGp6cnM2bMoEWLFqSnp3Pq1ClWrVrFwYMHKSoqolatWuTk5HDlyhXatGnDxx9/jLOzc1XfgoiIiIiIiMh9pdxhktlsZurUqaxbt47S0lJKS0vx9fWlZcuW+Pn58c9//hN/f3/mzp3LsWPHiI6OJicnh6FDh/Lcc8+Rnp7Otm3bWLFiBdHR0URERFTyrYlcZTKZ2LlzJ9OnT8fFxYWEhARatGhhfc9kMrF27VqOHz/O+vXruXTpEjExMQwZMqSKRy4iIiIiIiJy/7mtmUkFBQW4uLiQkpLCyZMnOXDgAKmpqRQXF/Prr79iY2PD3LlzCQkJ4fjx48TGxnLkyJGrH2Qw4OXlxaBBg6xBknbEknvFEii99dZbuLq6Mnv2bGtD7Wv9/PPP5OTkEBAQAKhGRURERERERK53W2HSzR6sTSYTZ8+eJTU1lffffx+TyURMTAw9evQAYMeOHWRlZeHh4YG7uzt+fn6AdsSSe+9WgdL19a0aFREREREREbnRbYVJ17v+YXv79u3MmjWLgoICoqOj6dWr103P02wPqSrXB0pz5syxLnkTERERERERkVu7qzDJ4tpwaNu2bcyePZsrV64wYcIEevbsedeDFKlIlkApPj4eOzs7EhISaNWqVVUPS0REREREROSBUCFreAwGg3UL9eDgYCZMmICtrS1xcXH88ssvN2yvLlKVHBwc6Ny5M9HR0WRlZfHTTz9V9ZBEREREREREHhgVMjPJ4toZSl988QWFhYWEhYVV1OVFKpTJZCIzM5NGjRpV9VBEREREREREHhgVGibBzfshqZGx3O9UoyIiIiIiIiLlU+FhkoiIiIiIiIiIVF+aiiEiIiIiIiIiIuWmMElERERERERERMpNYZKIiIiIiIiIiJSbwiQRERERERERESk3hUkiIiIiIiIiIlJuCpNERERERERERKTcFCaJiIiIiIiIiEi5KUwSEREREREREZFyU5gkIiIiIiIiIiLlpjBJRERERERERETKTWGSiIiIiIiIiIiUm8IkEREREREREREpN4VJIiIiIiIiIiJSbgqTRERERERERESk3BQmiYiIiIiIiIhIuSlMEhERERERERGRclOYJCIiIiIiIiIi5aYwSUREREREREREyk1hkoiIiIiIiIiIlJvCJBERERERERERKTeFSSIiIiIiIiIiUm4Kk0REREREREREpNwUJomIiIiIiIiISLkpTBIRERERERERkXJTmCQiIiIiIiIiIuWmMElERETkPrdv3z78/PyYP39+mdcHDhyIn5/fHV93/vz5+Pn5sW/fvrsdooiIiDxE7Kp6ACIiIiLVxa+//kpwcHCZ1+zt7alXrx7t27fnlVdeoVWrVlU0OhEREZGKoTBJREREpII1btyY0NBQAC5dukRqaiobNmxgy5YtLFu2jICAgAr5nJkzZ3L58uU7Pn/AgAH07NmThg0bVsh4RERE5OGgMElERESkgjVu3JjRo0eXeW3u3Ll88MEHJCQk8PHHH1fI59xtCOTm5oabm1uFjEVEREQeHuqZJCIiInIPDBw4EIAffvgBgOLiYpYuXUpoaCj+/v4EBAQwcOBAtm/fflvX/L2eSVu3biUyMpLAwEDatm1Lt27dmDhxIj/99JP1mD/qmZSWlsa4ceN4+umnefTRR+natStvvvkmOTk5Nxy7d+9ehg4daj22Y8eO9O/fn//93/8t972IiIjIg0Mzk0RERETuIYPBQGlpKWPGjGHbtm00adKEAQMGcOnSJTZt2sTIkSOZNGkSERERd/wZ8fHxLF26lDp16hAcHEy9evXIyMhgz549tGnThpYtW/7h+du2bSMqKgobGxuCg4Px9PQkPT2d5cuXs2vXLlavXk3t2rUB+PrrrxkxYgS1atUiODiYBg0acOHCBdLS0li3bh39+vW74/sQERGR+5PCJBEREZF74JNPPgGgbdu2rFu3jm3btvHkk0+yePFiHBwcABg+fDh9+/Zl1qxZBAcH06hRo9v+nK+++oqlS5fSsmVLEhMTqVu3rvW94uJiLl68+Ifn5+TkEB0dTd26dVm5ciXe3t7W9zZu3Mjrr7/OvHnzeOONNwD49NNPKS0tJTEx8Ybm4jebxSQiIiIPPi1zExEREalgp06dYv78+cyfP5+ZM2cyYMAAFixYgKOjI+PGjSMpKQmAiRMnWoMkuNoDKSIiguLiYj7//PM7+mxLaBUXF1cmSAKws7Ojfv36f3j+unXryM/P5/XXXy8TJAE899xztGnTho0bN95wnqOj4w2vXf/5IiIiUj1oZpKIiIhIBTt16hTvvfceAPb29tSrV49evXoxbNgw/Pz8OHbsGDVq1MDf3/+GcwMDA4GrPYvuxKFDh3BwcODJJ5+8o/NTU1Ot1zl9+vQN7xcWFpKTk8OFCxdwc3OjZ8+ebNmyhX79+tGrVy86dOhAQECAGnuLiIhUYwqTRERERCrY008/zeLFi3/3/fz8fDw9PW/6XoMGDazH3In8/Hw8PDywsbmzCei5ubkArFix4g+Pu3z5MgB//vOfsbe3Z9myZaxatYoVK1ZgMBgIDAwkNjaW1q1b39E4RERE5P6lMElERETkHnN1deXChQs3fS87O9t6zJ2oWbMmWVlZmM3mOwqULJ+7fv36WzbqtjAajRiNRvLz8/nuu+/48ssvWbNmDUOHDmXTpk3UqlXrtschIiIi9y/1TBIRERG5x1q3bs3ly5c5dOjQDe99++23ADc0sy4vf39/TCaT9Tp3cj78Z7nb7XB1daVz5868+eab9OnTh+zsbA4ePHhH4xAREZH7l8IkERERkXusT58+AMyePZuioiLr6xkZGSxduhQ7OztCQ0Pv6NoDBgwA4K233rph57bi4mLrzKff8/zzz+Pi4sLcuXM5fvz4De9fvny5TNCUkpJCSUnJDcdZZl7drDG3iIiIPNi0zE1ERETkHgsLC2PLli1s27aN0NBQunTpwuXLl9m0aRMXL14kNjaWRo0a3dG1n3nmGSIjI1myZAkhISEYjUbq1atHZmYme/bsITIykoiIiN89383NjTlz5jB27FjCwsIICgqiWbNmmEwmzpw5w7fffsvjjz9u7Qk1ffp0zp07R0BAAN7e3hgMBg4cOMChQ4do164dAQEBd3QfIiIicv9SmCQiIiJyjxkMBubNm0diYiJJSUksX74ce3t72rRpQ0REBMHBwXd1/ZiYGB5//HGWL1/O5s2bKSwspEGDBjz11FN06tTplud36dKFpKQkFi9ezJ49e9i9ezfOzs54eHjQt2/fMrOmhg8fzpYtWzhy5Ai7du3Czs4Ob29vJkyYQP/+/bG1tb2rexEREZH7j6G0tLS0qgchIiIiIiIiIiIPBvVMEhERERERERGRclOYJCIiIiIiIiIi5aYwSUREREREREREyk1hkoiIiIiIiIiIlJvCJBERERERERERKTeFSSIiIiIiIiIiUm4Kk0REREREREREpNwUJomIiIiIiIiISLkpTBIRERERERERkXJTmCQiIiIiIiIiIuWmMElERERERERERMpNYZKIiIiIiIiIiJSbwiQRERERERERESm3/wekZGB/7dUx2AAAAABJRU5ErkJggg==\n"
+ ]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
}
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "colors = ['#4CAF50', '#FFC107'] * (len(outs) // 2)\n",
+ "\n",
+ "plt.figure(figsize=(12, 7))\n",
+ "\n",
+ "plt.bar(outs.keys(), outs.values(), color=colors, width=0.7, edgecolor='black')\n",
+ "\n",
+ "plt.title(\"ShieldGemma 2 Policy Classification Probabilities\", fontsize=14, pad=20)\n",
+ "plt.xlabel(\"Policies\", fontsize=14, labelpad=15)\n",
+ "plt.ylabel(\"Probability\", fontsize=14, labelpad=15)\n",
+ "\n",
+ "plt.xticks(rotation=45, ha='right', fontsize=12)\n",
+ "plt.yticks(fontsize=12)\n",
+ "\n",
+ "plt.grid(axis='y', linestyle='--', alpha=0.5)\n",
+ "\n",
+ "plt.tight_layout()\n",
+ "\n",
+ "plt.show()\n"
]
},
{
"cell_type": "markdown",
- "source": [
- "Feel free to also try ShieldGemma 2 [in this demo](https://huggingface.co/spaces/merve/ShieldGemma2-VLM)."
- ],
"metadata": {
"id": "nPWSOqEvW1GY"
- }
+ },
+ "source": [
+ "Feel free to also try ShieldGemma 2 [in this demo](https://huggingface.co/spaces/merve/ShieldGemma2-VLM)."
+ ]
},
{
"cell_type": "markdown",
- "source": [
- ""
- ],
"metadata": {
"id": "BmH8KAniW9Sy"
+ },
+ "source": [
+ ""
+ ]
+ }
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "gpuType": "L4",
+ "include_colab_link": true,
+ "machine_shape": "hm",
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ },
+ "language_info": {
+ "name": "python"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "1bb0705b0c4c4ca0bb114587056e1087": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a327df45929941ff8d506c7f6c134c3d",
+ "placeholder": "",
+ "style": "IPY_MODEL_6acb4a97db60439e82ef736e0bf25378",
+ "value": "Loading checkpoint shards: 100%"
+ }
+ },
+ "530a43846b9c4d21a1ffda8b1a7c39a0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c3b97f01108543188b3acc4b5c5951e4",
+ "placeholder": "",
+ "style": "IPY_MODEL_6e2b2a35e144470aaf9bb152ba622db0",
+ "value": " 2/2 [00:02<00:00, 1.08s/it]"
+ }
+ },
+ "6acb4a97db60439e82ef736e0bf25378": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "6e2b2a35e144470aaf9bb152ba622db0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "793bcab23bc547e7a39a3825a3cfc00b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "7ea5ee4d642e4b99bf9c6460b24f2250": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a809cd83602a46aea3fb52fcf798b328",
+ "max": 2,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_793bcab23bc547e7a39a3825a3cfc00b",
+ "value": 2
+ }
+ },
+ "97375927970449739b877b97f0bc215b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_1bb0705b0c4c4ca0bb114587056e1087",
+ "IPY_MODEL_7ea5ee4d642e4b99bf9c6460b24f2250",
+ "IPY_MODEL_530a43846b9c4d21a1ffda8b1a7c39a0"
+ ],
+ "layout": "IPY_MODEL_cfda0c5403c740128b6ed8165b294d4d"
+ }
+ },
+ "a327df45929941ff8d506c7f6c134c3d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a809cd83602a46aea3fb52fcf798b328": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c3b97f01108543188b3acc4b5c5951e4": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "cfda0c5403c740128b6ed8165b294d4d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ }
}
}
- ]
-}
\ No newline at end of file
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}