--- license: mit base_model: Deepseek-R1 tags: - text-generation - sql - lora - unsloth - Deepseek --- # SQLNova - LoRA Fine-Tuned Deepseek 8B for Text-to-SQL Generation **SQLNova** is a lightweight LoRA adapter fine-tuned on top of Unsloth’s Architecture. It is designed to convert natural language instructions into valid SQL queries with minimal compute overhead, making it ideal for integration into data-driven applications or chat interfaces. The model was trained on over **100,000 natural language-to-SQL pairs** spanning diverse domains, including Education, Technical, Healthcare, and more. --- ## Model Dependencies - **Python Version**: `3.10` - **libraries**: `unsloth` - pip install unsloth ## Model Highlights - **Base model**: `Deepseek R1 8B Distilled Llama` - **Tokenizer**: Compatible with `Deepseek R1 8B Distilled Llama` - **Fine tuned for**: Text to SQL Converter - **Accuracy**: > 85% - **Language**: English Natural Language Sentences finetuned - **Format**: `safetensors` ### General Information - **Model type:** Text Generation - **Language:** English - **License:** MIT - **Base model:** DeepSeek R1 distilled on Llama3 8B ### Model Repository - **Hugging Face Model Card:** [https://huggingface.co/mervp/SQLNova](https://huggingface.co/mervp/SQLNova) --- ## 💡 Intended Uses ### Applications - Generating SQL queries from natural language prompts - Powering AI assistants for databases - Enhancing SQL query builders or no-code data tools - Automating analytics workflows --- ## Limitations While **SQLNova** performs well in many real-world scenarios Since its a Reasoning Model, there are some limitations: - It may produce **invalid SQL** for rare or malformed inputs in rarest cases. - Assumes a **generic SQL dialect**, resembling MySQL/PostgreSQL syntax. ### Recommendation for Use of Model - Always **validate generated SQL** before executing in production. - Include **schema context** in prompts to improve accuracy. - Use with **human-in-the-loop** review for critical applications. Thanks for visiting and downloading this model! If this model helped you, please consider leaving a like. Your support helps this model reach more developers and encourages further improvements if any. --- ## How to Use the Model ```python from unsloth import FastLanguageModel model, tokenizer = FastLanguageModel.from_pretrained( model_name="mervp/SQLNova", max_seq_length=2048, dtype=None, ) prompt = """ You are an text to SQL query translator. Users will ask you questions in English and you will generate a SQL query based on their question SQL has to be simple, The schema context has been provided to you. ### User Question: {} ### Sql Context: {} ### Sql Query: {} """ question = "List the names of customers who have an account balance greater than 6000." schema = """ CREATE TABLE socially_responsible_lending ( customer_id INT, name VARCHAR(50), account_balance DECIMAL(10, 2) ); INSERT INTO socially_responsible_lending VALUES (1, 'james Chad', 5000), (2, 'Jane Rajesh', 7000), (3, 'Alia Kapoor', 6000), (4, 'Fatima Patil', 8000); """ inputs = tokenizer( [prompt.format(question, schema, "")], return_tensors="pt", padding=True, truncation=True ).to("cuda") output = model.generate( **inputs, max_new_tokens=256, temperature=0.2, top_p=0.9, top_k=50, do_sample=True ) decoded_output = tokenizer.decode(output[0], skip_special_tokens=True) if "### Sql Query:" in decoded_output: sql_query = decoded_output.split("### Sql Query:")[-1].strip() else: sql_query = decoded_output.strip() print(sql_query)