Update meshconfig.py
Browse files- meshconfig.py +63 -2
meshconfig.py
CHANGED
@@ -1,3 +1,64 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig, PreTrainedModel, AutoModelForCausalLM
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import math
|
6 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
7 |
|
8 |
+
class MeshConfig(PretrainedConfig):
|
9 |
+
model_type = "mesh"
|
10 |
+
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
vocab_size=32000,
|
14 |
+
hidden_size=768,
|
15 |
+
intermediate_size=2048,
|
16 |
+
num_hidden_layers=12,
|
17 |
+
num_attention_heads=12,
|
18 |
+
num_key_value_heads=12,
|
19 |
+
max_position_embeddings=4096,
|
20 |
+
initializer_range=0.02,
|
21 |
+
rms_norm_eps=1e-6,
|
22 |
+
use_cache=True,
|
23 |
+
pad_token_id=0,
|
24 |
+
bos_token_id=1,
|
25 |
+
eos_token_id=2,
|
26 |
+
tie_word_embeddings=False,
|
27 |
+
# Mesh specific configurations
|
28 |
+
mesh_grid_size=(2, 2), # 2x2 grid
|
29 |
+
expert_intermediate_size=256, # Example size for expert intermediate layer
|
30 |
+
routing_k=2, # Top-k routing
|
31 |
+
neighbor_exchange_enabled=True,
|
32 |
+
cross_expert_attention_enabled=True,
|
33 |
+
**kwargs
|
34 |
+
):
|
35 |
+
super().__init__(
|
36 |
+
vocab_size=vocab_size,
|
37 |
+
hidden_size=hidden_size,
|
38 |
+
intermediate_size=intermediate_size,
|
39 |
+
num_hidden_layers=num_hidden_layers,
|
40 |
+
num_attention_heads=num_attention_heads,
|
41 |
+
num_key_value_heads=num_key_value_heads,
|
42 |
+
max_position_embeddings=max_position_embeddings,
|
43 |
+
initializer_range=initializer_range,
|
44 |
+
rms_norm_eps=rms_norm_eps,
|
45 |
+
use_cache=use_cache,
|
46 |
+
pad_token_id=pad_token_id,
|
47 |
+
bos_token_id=bos_token_id,
|
48 |
+
eos_token_id=eos_token_id,
|
49 |
+
tie_word_embeddings=tie_word_embeddings,
|
50 |
+
**kwargs,
|
51 |
+
)
|
52 |
+
self.mesh_grid_size = mesh_grid_size
|
53 |
+
# Calculate expert_intermediate_size based on the shared and expert parameter split
|
54 |
+
# Total parameters = Shared (Embedding, Norm, LM Head) + Experts + Overhead
|
55 |
+
# This calculation is complex and depends on the specific layer mapping.
|
56 |
+
# For now, let's use a placeholder or calculate it based on the target parameter count.
|
57 |
+
# Target A242M (top-2): 100M shared + 135M (2 experts) + 7M overhead = 242M
|
58 |
+
# Let's assume the 135M for 2 experts is primarily in the intermediate size.
|
59 |
+
# We need to determine how Gemma's intermediate size maps to the expert intermediate size.
|
60 |
+
# For now, I will keep a placeholder or a simple ratio.
|
61 |
+
self.expert_intermediate_size = intermediate_size // (mesh_grid_size[0] * mesh_grid_size[1]) # Example: divide intermediate size by number of experts
|
62 |
+
self.routing_k = routing_k
|
63 |
+
self.neighbor_exchange_enabled = neighbor_exchange_enabled
|
64 |
+
self.cross_expert_attention_enabled = cross_expert_attention_enabled
|