aquiffoo commited on
Commit
1dbd336
·
verified ·
1 Parent(s): 869ada5

Update crossexpertattention.py

Browse files
Files changed (1) hide show
  1. crossexpertattention.py +39 -2
crossexpertattention.py CHANGED
@@ -1,3 +1,40 @@
1
- # Source code for CrossExpertAttention from cell 39f2782d
2
- # Please replace this with the actual code from the notebook cell.
 
 
 
 
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig, PreTrainedModel, AutoModelForCausalLM # Import AutoModelForCausalLM
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ import math
6
+ from transformers.modeling_outputs import CausalLMOutputWithPast # Import the necessary output class
7
 
8
+ # Define the Cross-Expert Attention mechanism
9
+ class CrossExpertAttention(nn.Module):
10
+ def __init__(self, config: MeshConfig):
11
+ super().__init__()
12
+ self.config = config
13
+ # Define multi-head attention layers or similar for cross-expert communication
14
+ # This is a placeholder and needs detailed implementation
15
+ self.cross_attention = nn.MultiheadAttention(
16
+ embed_dim=config.hidden_size,
17
+ num_heads=config.num_attention_heads, # Using model's attention heads for now
18
+ batch_first=True
19
+ )
20
+
21
+ def forward(self, expert_outputs):
22
+ # expert_outputs shape: (batch_size, sequence_length, num_experts, hidden_size)
23
+
24
+ if not self.config.cross_expert_attention_enabled:
25
+ return expert_outputs
26
+
27
+ # Reshape for attention: (batch_size * sequence_length, num_experts, hidden_size)
28
+ batch_seq_size = expert_outputs.shape[0] * expert_outputs.shape[1]
29
+ reshaped_outputs = expert_outputs.view(batch_seq_size, self.config.mesh_grid_size[0] * self.config.mesh_grid_size[1], self.config.hidden_size)
30
+
31
+ # Apply cross-expert attention. Query, Key, Value are the same here (self-attention across experts)
32
+ # Attention mask could be used to restrict communication if needed
33
+ cross_attn_output, _ = self.cross_attention(reshaped_outputs, reshaped_outputs, reshaped_outputs)
34
+
35
+ # Reshape back: (batch_size, sequence_length, num_experts, hidden_size)
36
+ cross_attn_output = cross_attn_output.view(
37
+ expert_outputs.shape[0], expert_outputs.shape[1], self.config.mesh_grid_size[0] * self.config.mesh_grid_size[1], self.config.hidden_size
38
+ )
39
+
40
+ return cross_attn_output