from transformers import PretrainedConfig, PreTrainedModel, AutoModelForCausalLM # Import AutoModelForCausalLM import torch import torch.nn as nn import torch.nn.functional as F import math from transformers.modeling_outputs import CausalLMOutputWithPast # Import the necessary output class # Define the Cross-Expert Attention mechanism class CrossExpertAttention(nn.Module): def __init__(self, config: MeshConfig): super().__init__() self.config = config # Define multi-head attention layers or similar for cross-expert communication # This is a placeholder and needs detailed implementation self.cross_attention = nn.MultiheadAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, # Using model's attention heads for now batch_first=True ) def forward(self, expert_outputs): # expert_outputs shape: (batch_size, sequence_length, num_experts, hidden_size) if not self.config.cross_expert_attention_enabled: return expert_outputs # Reshape for attention: (batch_size * sequence_length, num_experts, hidden_size) batch_seq_size = expert_outputs.shape[0] * expert_outputs.shape[1] reshaped_outputs = expert_outputs.view(batch_seq_size, self.config.mesh_grid_size[0] * self.config.mesh_grid_size[1], self.config.hidden_size) # Apply cross-expert attention. Query, Key, Value are the same here (self-attention across experts) # Attention mask could be used to restrict communication if needed cross_attn_output, _ = self.cross_attention(reshaped_outputs, reshaped_outputs, reshaped_outputs) # Reshape back: (batch_size, sequence_length, num_experts, hidden_size) cross_attn_output = cross_attn_output.view( expert_outputs.shape[0], expert_outputs.shape[1], self.config.mesh_grid_size[0] * self.config.mesh_grid_size[1], self.config.hidden_size ) return cross_attn_output