Update README.md
Browse files
README.md
CHANGED
@@ -40,5 +40,393 @@ This is our first ever model! Allow us to explain how the `mesh` architecture wo
|
|
40 |
## Here's how the mesh architecture works:
|
41 |

|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
## Disclaimer
|
44 |
This small language model is just a proof-of-concept, paving the way to the final release, which is likely to happen in Q4 2025, and include more models and better support from external libraries such as Transformers and Llama.cpp.
|
|
|
40 |
## Here's how the mesh architecture works:
|
41 |

|
42 |
|
43 |
+
## How to load the model
|
44 |
+
```python
|
45 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, PretrainedConfig, PreTrainedModel
|
46 |
+
import torch
|
47 |
+
import torch.nn as nn
|
48 |
+
import torch.nn.functional as F
|
49 |
+
import math
|
50 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
51 |
+
from transformers.generation import GenerationMixin
|
52 |
+
import os
|
53 |
+
|
54 |
+
class MeshConfig(PretrainedConfig):
|
55 |
+
model_type = "mesh"
|
56 |
+
|
57 |
+
def __init__(
|
58 |
+
self,
|
59 |
+
vocab_size=32000,
|
60 |
+
hidden_size=768,
|
61 |
+
intermediate_size=2048,
|
62 |
+
num_hidden_layers=12,
|
63 |
+
num_attention_heads=12,
|
64 |
+
num_key_value_heads=12,
|
65 |
+
max_position_embeddings=4096,
|
66 |
+
initializer_range=0.02,
|
67 |
+
rms_norm_eps=1e-6,
|
68 |
+
use_cache=True,
|
69 |
+
pad_token_id=0,
|
70 |
+
bos_token_id=1,
|
71 |
+
eos_token_id=2,
|
72 |
+
tie_word_embeddings=False,
|
73 |
+
mesh_grid_size=(2, 2),
|
74 |
+
expert_intermediate_size=256,
|
75 |
+
routing_k=2,
|
76 |
+
neighbor_exchange_enabled=True,
|
77 |
+
cross_expert_attention_enabled=True,
|
78 |
+
expert_scale_factor="sqrt_k",
|
79 |
+
load_in_8bit=False,
|
80 |
+
load_in_4bit=False,
|
81 |
+
**kwargs
|
82 |
+
):
|
83 |
+
super().__init__(
|
84 |
+
vocab_size=vocab_size,
|
85 |
+
hidden_size=hidden_size,
|
86 |
+
intermediate_size=intermediate_size,
|
87 |
+
num_hidden_layers=num_hidden_layers,
|
88 |
+
num_attention_heads=num_attention_heads,
|
89 |
+
num_key_value_heads=num_key_value_heads,
|
90 |
+
max_position_embeddings=max_position_embeddings,
|
91 |
+
initializer_range=initializer_range,
|
92 |
+
rms_norm_eps=rms_norm_eps,
|
93 |
+
use_cache=use_cache,
|
94 |
+
pad_token_id=pad_token_id,
|
95 |
+
bos_token_id=bos_token_id,
|
96 |
+
eos_token_id=eos_token_id,
|
97 |
+
tie_word_embeddings=tie_word_embeddings,
|
98 |
+
**kwargs,
|
99 |
+
)
|
100 |
+
self.mesh_grid_size = mesh_grid_size
|
101 |
+
self.expert_intermediate_size = kwargs.pop("expert_intermediate_size", intermediate_size // (mesh_grid_size[0] * mesh_grid_size[1]))
|
102 |
+
self.routing_k = routing_k
|
103 |
+
self.neighbor_exchange_enabled = neighbor_exchange_enabled
|
104 |
+
self.cross_expert_attention_enabled = cross_expert_attention_enabled
|
105 |
+
self.expert_scale_factor = expert_scale_factor
|
106 |
+
self.load_in_8bit = load_in_8bit
|
107 |
+
self.load_in_4bit = load_in_4bit
|
108 |
+
|
109 |
+
class MeshExpert(nn.Module):
|
110 |
+
def __init__(self, config: MeshConfig):
|
111 |
+
super().__init__()
|
112 |
+
self.fc1 = nn.Linear(config.hidden_size, config.expert_intermediate_size)
|
113 |
+
self.gelu = nn.GELU()
|
114 |
+
self.fc2 = nn.Linear(config.expert_intermediate_size, config.hidden_size)
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
return self.fc2(self.gelu(self.fc1(x)))
|
118 |
+
|
119 |
+
class MeshRouter(nn.Module):
|
120 |
+
def __init__(self, config: MeshConfig):
|
121 |
+
super().__init__()
|
122 |
+
self.gate = nn.Linear(config.hidden_size, config.mesh_grid_size[0] * config.mesh_grid_size[1])
|
123 |
+
self.softmax = nn.Softmax(dim=-1)
|
124 |
+
self.routing_k = config.routing_k
|
125 |
+
|
126 |
+
def forward(self, x):
|
127 |
+
gate_scores = self.gate(x)
|
128 |
+
gate_weights = self.softmax(gate_scores)
|
129 |
+
topk_weights, topk_indices = torch.topk(gate_weights, self.routing_k, dim=-1)
|
130 |
+
return topk_weights, topk_indices
|
131 |
+
|
132 |
+
class NeighborExchange(nn.Module):
|
133 |
+
def __init__(self, config: MeshConfig):
|
134 |
+
super().__init__()
|
135 |
+
self.config = config
|
136 |
+
self.num_experts_x = config.mesh_grid_size[0]
|
137 |
+
self.num_experts_y = config.mesh_grid_size[1]
|
138 |
+
self.num_experts = self.num_experts_x * self.num_experts_y
|
139 |
+
|
140 |
+
self.exchange_projection = nn.Linear(config.hidden_size, config.hidden_size)
|
141 |
+
|
142 |
+
def forward(self, expert_outputs, expert_indices=None):
|
143 |
+
if not self.config.neighbor_exchange_enabled:
|
144 |
+
return expert_outputs
|
145 |
+
|
146 |
+
batch_size, seq_length, num_experts, hidden_size = expert_outputs.shape
|
147 |
+
reshaped_outputs = expert_outputs.view(batch_size, seq_length, self.num_experts_x, self.num_experts_y, hidden_size)
|
148 |
+
aggregated_neighbor_info = torch.zeros_like(reshaped_outputs)
|
149 |
+
|
150 |
+
for i in range(self.num_experts_x):
|
151 |
+
for j in range(self.num_experts_y):
|
152 |
+
current_expert_output = reshaped_outputs[:, :, i, j, :]
|
153 |
+
neighbor_info = torch.zeros_like(current_expert_output)
|
154 |
+
neighbors = []
|
155 |
+
if i > 0: neighbors.append(reshaped_outputs[:, :, i-1, j, :])
|
156 |
+
if i < self.num_experts_x - 1: neighbors.append(reshaped_outputs[:, :, i+1, j, :])
|
157 |
+
if j > 0: neighbors.append(reshaped_outputs[:, :, i, j-1, :])
|
158 |
+
if j < self.num_experts_y - 1: neighbors.append(reshaped_outputs[:, :, i, j+1, :])
|
159 |
+
|
160 |
+
if neighbors:
|
161 |
+
neighbor_stack = torch.stack(neighbors, dim=-2)
|
162 |
+
aggregated_info = torch.mean(neighbor_stack, dim=-2)
|
163 |
+
neighbor_info = aggregated_info
|
164 |
+
|
165 |
+
transformed_neighbor_info = self.exchange_projection(neighbor_info)
|
166 |
+
aggregated_neighbor_info[:, :, i, j, :] = transformed_neighbor_info
|
167 |
+
|
168 |
+
aggregated_neighbor_info = aggregated_neighbor_info.view(batch_size, seq_length, num_experts, hidden_size)
|
169 |
+
exchanged_expert_outputs = expert_outputs + aggregated_neighbor_info
|
170 |
+
|
171 |
+
return exchanged_expert_outputs
|
172 |
+
|
173 |
+
class CrossExpertAttention(nn.Module):
|
174 |
+
def __init__(self, config: MeshConfig):
|
175 |
+
super().__init__()
|
176 |
+
self.config = config
|
177 |
+
self.cross_attention = nn.MultiheadAttention(
|
178 |
+
embed_dim=config.hidden_size,
|
179 |
+
num_heads=config.num_attention_heads,
|
180 |
+
batch_first=True
|
181 |
+
)
|
182 |
+
|
183 |
+
def forward(self, expert_outputs):
|
184 |
+
if not self.config.cross_expert_attention_enabled:
|
185 |
+
return expert_outputs
|
186 |
+
|
187 |
+
batch_seq_size = expert_outputs.shape[0] * expert_outputs.shape[1]
|
188 |
+
reshaped_outputs = expert_outputs.view(batch_seq_size, self.config.mesh_grid_size[0] * self.config.mesh_grid_size[1], self.config.hidden_size)
|
189 |
+
cross_attn_output, _ = self.cross_attention(reshaped_outputs, reshaped_outputs, reshaped_outputs)
|
190 |
+
cross_attn_output = cross_attn_output.view(
|
191 |
+
expert_outputs.shape[0], expert_outputs.shape[1], self.config.mesh_grid_size[0] * self.config.mesh_grid_size[1], self.config.hidden_size
|
192 |
+
)
|
193 |
+
return cross_attn_output
|
194 |
+
|
195 |
+
class MeshLayer(nn.Module):
|
196 |
+
def __init__(self, config: MeshConfig):
|
197 |
+
super().__init__()
|
198 |
+
self.config = config
|
199 |
+
self.router = MeshRouter(config)
|
200 |
+
self.experts = nn.ModuleList([MeshExpert(config) for _ in range(config.mesh_grid_size[0] * config.mesh_grid_size[1])])
|
201 |
+
self.neighbor_exchange = NeighborExchange(config)
|
202 |
+
self.cross_expert_attention = CrossExpertAttention(config)
|
203 |
+
|
204 |
+
def forward(self, hidden_states):
|
205 |
+
topk_weights, topk_indices = self.router(hidden_states)
|
206 |
+
expanded_hidden_states = hidden_states.unsqueeze(2).expand(-1, -1, self.config.mesh_grid_size[0] * self.config.mesh_grid_size[1], -1)
|
207 |
+
|
208 |
+
if self.config.expert_scale_factor == "sqrt_k":
|
209 |
+
scaling_factor = math.sqrt(self.config.routing_k)
|
210 |
+
scaled_expert_inputs = expanded_hidden_states * scaling_factor
|
211 |
+
elif self.config.expert_scale_factor == "1_over_k":
|
212 |
+
scaling_factor = 1.0 / self.config.routing_k
|
213 |
+
scaled_expert_inputs = expanded_hidden_states * scaling_factor
|
214 |
+
else:
|
215 |
+
scaled_expert_inputs = expanded_hidden_states
|
216 |
+
|
217 |
+
expert_outputs_list = [expert(scaled_expert_inputs[:, :, i, :]) for i, expert in enumerate(self.experts)]
|
218 |
+
expert_outputs = torch.stack(expert_outputs_list, dim=2)
|
219 |
+
|
220 |
+
exchanged_expert_outputs = self.neighbor_exchange(expert_outputs, topk_indices)
|
221 |
+
cross_attned_expert_outputs = self.cross_expert_attention(exchanged_expert_outputs)
|
222 |
+
|
223 |
+
gathered_outputs = torch.gather(
|
224 |
+
cross_attned_expert_outputs,
|
225 |
+
dim=2,
|
226 |
+
index=topk_indices.unsqueeze(-1).expand(-1, -1, -1, self.config.hidden_size)
|
227 |
+
)
|
228 |
+
|
229 |
+
combined_output = (gathered_outputs * topk_weights.unsqueeze(-1)).sum(dim=2)
|
230 |
+
|
231 |
+
return combined_output, topk_indices
|
232 |
+
|
233 |
+
class MeshModel(PreTrainedModel, GenerationMixin):
|
234 |
+
config_class = MeshConfig
|
235 |
+
|
236 |
+
def __init__(self, config: MeshConfig):
|
237 |
+
super().__init__(config)
|
238 |
+
self.config = config
|
239 |
+
self.embedding = nn.Embedding(config.vocab_size, config.hidden_size)
|
240 |
+
self.layers = nn.ModuleList([MeshLayer(config) for _ in range(config.num_hidden_layers)])
|
241 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps)
|
242 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
243 |
+
self.post_init()
|
244 |
+
|
245 |
+
self._supports_gradient_checkpointing = True
|
246 |
+
self.gradient_checkpointing = False
|
247 |
+
|
248 |
+
def forward(
|
249 |
+
self,
|
250 |
+
input_ids=None,
|
251 |
+
attention_mask=None,
|
252 |
+
token_type_ids=None,
|
253 |
+
position_ids=None,
|
254 |
+
inputs_embeds=None,
|
255 |
+
labels=None,
|
256 |
+
return_dict=None,
|
257 |
+
output_attentions=None,
|
258 |
+
output_hidden_states=None,
|
259 |
+
past_key_values=None,
|
260 |
+
):
|
261 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
262 |
+
|
263 |
+
if input_ids is not None and inputs_embeds is not None:
|
264 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
265 |
+
elif input_ids is not None:
|
266 |
+
inputs_embeds = self.embedding(input_ids)
|
267 |
+
elif inputs_embeds is not None:
|
268 |
+
pass
|
269 |
+
else:
|
270 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
271 |
+
|
272 |
+
hidden_states = inputs_embeds
|
273 |
+
|
274 |
+
if self.gradient_checkpointing and self.training:
|
275 |
+
import torch.utils.checkpoint
|
276 |
+
|
277 |
+
for i, layer in enumerate(self.layers):
|
278 |
+
if hasattr(layer, 'forward') and callable(layer.forward):
|
279 |
+
if self.gradient_checkpointing and self.training:
|
280 |
+
checkpoint_output = torch.utils.checkpoint.checkpoint(
|
281 |
+
layer, hidden_states, use_reentrant=False
|
282 |
+
)
|
283 |
+
if isinstance(checkpoint_output, tuple):
|
284 |
+
hidden_states = checkpoint_output[0]
|
285 |
+
else:
|
286 |
+
hidden_states = checkpoint_output
|
287 |
+
|
288 |
+
else:
|
289 |
+
layer_output = layer(hidden_states)
|
290 |
+
hidden_states = layer_output[0]
|
291 |
+
else:
|
292 |
+
print(f"Warning: Layer {i} does not have a callable forward method. Skipping layer processing.")
|
293 |
+
|
294 |
+
hidden_states = self.norm(hidden_states)
|
295 |
+
logits = self.lm_head(hidden_states)
|
296 |
+
|
297 |
+
loss = None
|
298 |
+
if labels is not None:
|
299 |
+
loss_fct = nn.CrossEntropyLoss()
|
300 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
301 |
+
shift_labels = labels[..., 1:].contiguous()
|
302 |
+
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
|
303 |
+
|
304 |
+
if return_dict:
|
305 |
+
return CausalLMOutputWithPast(
|
306 |
+
loss=loss,
|
307 |
+
logits=logits,
|
308 |
+
)
|
309 |
+
else:
|
310 |
+
return (loss, logits)
|
311 |
+
|
312 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
313 |
+
if past_key_values is not None:
|
314 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
315 |
+
if inputs_embeds is not None:
|
316 |
+
inputs_embeds = inputs_embeds[:, -1, :].unsqueeze(1)
|
317 |
+
|
318 |
+
if inputs_embeds is not None:
|
319 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
320 |
+
else:
|
321 |
+
model_inputs = {"input_ids": input_ids}
|
322 |
+
|
323 |
+
if "attention_mask" in kwargs:
|
324 |
+
model_inputs["attention_mask"] = kwargs["attention_mask"]
|
325 |
+
|
326 |
+
return model_inputs
|
327 |
+
|
328 |
+
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
|
329 |
+
self.gradient_checkpointing = True
|
330 |
+
self.config.gradient_checkpointing = True
|
331 |
+
print("Gradient checkpointing enabled on MeshModel.")
|
332 |
+
|
333 |
+
def gradient_checkpointing_disable(self):
|
334 |
+
self.gradient_checkpointing = False
|
335 |
+
self.config.gradient_checkpointing = False
|
336 |
+
print("Gradient checkpointing disabled on MeshModel.")
|
337 |
+
|
338 |
+
def _set_gradient_checkpointing(self, enable=True):
|
339 |
+
if enable:
|
340 |
+
self.gradient_checkpointing_enable()
|
341 |
+
else:
|
342 |
+
self.gradient_checkpointing_disable()
|
343 |
+
|
344 |
+
from transformers import AutoConfig
|
345 |
+
AutoConfig.register("mesh", MeshConfig)
|
346 |
+
AutoModelForCausalLM.register(MeshConfig, MeshModel)
|
347 |
+
|
348 |
+
HF_MERGED_REPO_STAGE003 = "mesh-labs/v0.1-2x2-stage003"
|
349 |
+
|
350 |
+
loaded_model_stage003 = None
|
351 |
+
loaded_tokenizer_stage003 = None
|
352 |
+
|
353 |
+
try:
|
354 |
+
print(f"Attempting to load Stage 003 merged model from HF: {HF_MERGED_REPO_STAGE003}...")
|
355 |
+
device_map = "auto"
|
356 |
+
|
357 |
+
loaded_model_stage003 = AutoModelForCausalLM.from_pretrained(
|
358 |
+
HF_MERGED_REPO_STAGE003,
|
359 |
+
trust_remote_code=True,
|
360 |
+
device_map=device_map,
|
361 |
+
torch_dtype=torch.float32
|
362 |
+
)
|
363 |
+
|
364 |
+
if torch.cuda.is_available():
|
365 |
+
loaded_model_stage003.to('cuda')
|
366 |
+
print("Stage 003 merged model moved to GPU.")
|
367 |
+
else:
|
368 |
+
print("Stage 003 merged model loaded on CPU.")
|
369 |
+
|
370 |
+
loaded_tokenizer_stage003 = AutoTokenizer.from_pretrained(
|
371 |
+
HF_MERGED_REPO_STAGE003,
|
372 |
+
trust_remote_code=True,
|
373 |
+
use_fast=False
|
374 |
+
)
|
375 |
+
|
376 |
+
print("Stage 003 merged model and tokenizer loaded successfully from Hugging Face Hub.")
|
377 |
+
|
378 |
+
except Exception as e:
|
379 |
+
print(f"Error loading Stage 003 merged model or tokenizer from Hugging Face Hub: {e}")
|
380 |
+
loaded_model_stage003 = None
|
381 |
+
loaded_tokenizer_stage003 = None
|
382 |
+
|
383 |
+
if loaded_model_stage003 is not None and loaded_tokenizer_stage003 is not None:
|
384 |
+
print("\n--- Starting Chat Interface ---")
|
385 |
+
print("Type your message and press Enter. Type 'quit' to exit.")
|
386 |
+
|
387 |
+
loaded_model_stage003.eval()
|
388 |
+
|
389 |
+
while True:
|
390 |
+
try:
|
391 |
+
user_input = input("You: ")
|
392 |
+
if user_input.lower() == 'quit':
|
393 |
+
break
|
394 |
+
|
395 |
+
prompt = f"Question: {user_input}\nAnswer:"
|
396 |
+
|
397 |
+
inputs = loaded_tokenizer_stage003(prompt, return_tensors="pt")
|
398 |
+
|
399 |
+
if torch.cuda.is_available():
|
400 |
+
inputs = {k: v.to('cuda') for k, v in inputs.items()}
|
401 |
+
|
402 |
+
with torch.no_grad():
|
403 |
+
outputs = loaded_model_stage003.generate(
|
404 |
+
**inputs,
|
405 |
+
max_new_tokens=128,
|
406 |
+
num_beams=1,
|
407 |
+
do_sample=False,
|
408 |
+
)
|
409 |
+
|
410 |
+
generated_sequence = loaded_tokenizer_stage003.decode(outputs[0], skip_special_tokens=True)
|
411 |
+
|
412 |
+
answer_prefix = "Answer:"
|
413 |
+
answer_start_index = generated_sequence.find(answer_prefix)
|
414 |
+
|
415 |
+
if answer_start_index != -1:
|
416 |
+
generated_answer = generated_sequence[answer_start_index + len(answer_prefix):].strip()
|
417 |
+
else:
|
418 |
+
print("Warning: 'Answer:' prefix not found in generated text. Showing full generated sequence.")
|
419 |
+
generated_answer = generated_sequence.strip()
|
420 |
+
|
421 |
+
print("Model:", generated_answer)
|
422 |
+
|
423 |
+
except Exception as e:
|
424 |
+
print(f"An error occurred: {e}")
|
425 |
+
print("Please try again or type 'quit' to exit.")
|
426 |
+
|
427 |
+
else:
|
428 |
+
print("\nModel or tokenizer not loaded. Cannot start chat interface.")
|
429 |
+
```
|
430 |
+
|
431 |
## Disclaimer
|
432 |
This small language model is just a proof-of-concept, paving the way to the final release, which is likely to happen in Q4 2025, and include more models and better support from external libraries such as Transformers and Llama.cpp.
|