File size: 1,467 Bytes
25ee833
48ae09f
 
 
 
 
 
 
25ee833
 
48ae09f
25ee833
48ae09f
25ee833
48ae09f
25ee833
48ae09f
 
25ee833
48ae09f
25ee833
48ae09f
 
 
25ee833
48ae09f
 
25ee833
48ae09f
25ee833
48ae09f
25ee833
48ae09f
25ee833
48ae09f
25ee833
48ae09f
25ee833
48ae09f
0cabd35
48ae09f
25ee833
48ae09f
25ee833
48ae09f
0cabd35
48ae09f
25ee833
48ae09f
25ee833
5ce7be1
 
 
0cabd35
 
 
 
 
5ce7be1
0cabd35
 
5ce7be1
0cabd35
 
48ae09f
25ee833
48ae09f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
language:
- ms
- en
datasets:
- mesolitica/Malaysian-Reasoning
base_model:
- mesolitica/Malaysian-Qwen2.5-1.5B-Instruct
---

# Malaysian Qwen 2.5 1.5B Instruct Reasoning SFT

Continue finetuning https://huggingface.co/mesolitica/Malaysian-Qwen2.5-1.5B-Instruct on highly curated Malaysian Reasoning dataset.

## Improvement

1. Reasoning on Math, Science, Translation, Dialects, Multiple choices, coding and Maktabah Al Bakri.
2. Warmup reasoning.

## Training session

Finetune on [mesolitica/Malaysian-Reasoning](https://huggingface.co/datasets/mesolitica/Malaysian-Reasoning) to make the model better reasoning on Malaysian context.
  
## How we train

1. Full parameters on 12k context length.
5. WanDB at https://wandb.ai/huseinzol05/fpf-qwen2.5-1.5b-malaysian-12k-reasoning

Source code at https://github.com/mesolitica/malaya/tree/master/session/qwen2.5

### Dialect Translation

All the benchmarks generate using vLLM, evaluation based on sacrebleu CHRF max@5.

Source code for evaluation at https://github.com/mesolitica/malaya/tree/master/session/qwen2.5/evaluate-dialect

Dialect to standard Malay,

```

```

Standard Malay to dialect,

```

```

### MalayMMLU

Source code for evaluation at https://github.com/mesolitica/malaya/tree/master/session/qwen2.5/evaluate-malaymmlu

Evaluation based on Accuracy@1,

```

```

Evaluation based on Accuracy@5,

```

```

## Special thanks

Special thanks to https://www.sns.com.my and Nvidia for 8x H100 node!