messham commited on
Commit
92a6e1e
·
1 Parent(s): c98b1db
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 286.98 +/- 13.61
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f92fc591670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f92fc591700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f92fc591790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f92fc591820>", "_build": "<function ActorCriticPolicy._build at 0x7f92fc5918b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f92fc591940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f92fc5919d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f92fc591a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f92fc591af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f92fc591b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f92fc591c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f92fc591ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f92fc58e300>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673871568307578654, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADOjzyPdmm6y2k0M7IYGzGpco66OYq7swAAgD8AAIA/QN+2vemPkz+zn7m+/HUhv55f3b1lMZi9AAAAAAAAAAAAuuG8X66BP1Fvsb238Qy/moumvDjv2r0AAAAAAAAAAOb8Pr1hCGA/OB1Gvb4G5L54kpu8T9ulvAAAAAAAAAAA5hV4vWAfpz4azV0+LWyfvhCQuTmbB5Y9AAAAAAAAAACA6RG+CCK0PhibZz4j1bC+/9uUvHMXojwAAAAAAAAAAAC7OL1cFm68P6qrPTMKCDzja9I9TtGzPQAAgD8AAIA/TSFYvos7Pj+1QGa+TjIOv5D/jb5Q2ug8AAAAAAAAAAAAiIA8r8FvPW+OzL1cN4G+iPDdveOgpDwAAAAAAAAAAM08eb0pEH+6c9PZtYABtbAahHY5koLvNAAAgD8AAIA/M9TXPRlD7T4D706+lHjJvsWDXr3qc9O9AAAAAAAAAACNosW9KmuaP8Tos748lx2/XFQCvh4vjr4AAAAAAAAAAE1esT1VIJQ/UXObPl2P0L5nLmU+DsKJPgAAAAAAAAAAph2TPXPQqj9G9nQ+AY/tvs8Ogj4LnhQ9AAAAAAAAAAAALfi8FASCuqJnorMSmVOwXvgIOm9ctTMAAIA/AACAP00ZdT0Umo66qMMiPaK5MLP30PW68CZaswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISREZVnHmc0CUhpRSlIwBbJRNGAGMAXSUR0Clw+i9qUNbdX2UKGgGaAloD0MIByeiXxssc0CUhpRSlGgVTQcBaBZHQKXEC9zwMH91fZQoaAZoCWgPQwgTKji8oE1vQJSGlFKUaBVL7mgWR0ClxGJB5X2edX2UKGgGaAloD0MI+fNtwRI8c0CUhpRSlGgVTR4BaBZHQKXEe3UhFE11fZQoaAZoCWgPQwiPp+UHrp9uQJSGlFKUaBVL6GgWR0ClxIiDEm6YdX2UKGgGaAloD0MIsKpefqdncECUhpRSlGgVS/toFkdApcS4XuVopXV9lChoBmgJaA9DCAUzpmDNLnFAlIaUUpRoFUveaBZHQKXFM7hegL91fZQoaAZoCWgPQwiBeF2/oF9xQJSGlFKUaBVL+mgWR0ClxaWgezUrdX2UKGgGaAloD0MIDFwea8Zmb0CUhpRSlGgVS+5oFkdApcWvTy8SPHV9lChoBmgJaA9DCGiXb32YE3BAlIaUUpRoFUvpaBZHQKXFyGXXyy51fZQoaAZoCWgPQwigbMoVXlhyQJSGlFKUaBVL7mgWR0ClxgbkfcN6dX2UKGgGaAloD0MImNpSB/lgcECUhpRSlGgVS+BoFkdApcZIt6HCXXV9lChoBmgJaA9DCGq932hHCG9AlIaUUpRoFUv1aBZHQKXGvCKJl8R1fZQoaAZoCWgPQwh32hoRjKNzQJSGlFKUaBVL6WgWR0ClxryI55qudX2UKGgGaAloD0MI0xIro5Fyc0CUhpRSlGgVS/5oFkdApcbtFUhmoXV9lChoBmgJaA9DCOIC0ChdlnFAlIaUUpRoFU0FAWgWR0Clx1aews5GdX2UKGgGaAloD0MIduCcESUIcECUhpRSlGgVS9poFkdApcdz7EYO2HV9lChoBmgJaA9DCGO4OgBimHJAlIaUUpRoFU3OAWgWR0Clx3YAjps5dX2UKGgGaAloD0MIZRwj2SOHb0CUhpRSlGgVTQQBaBZHQKXHfeRgZ0l1fZQoaAZoCWgPQwgp6WFodV5tQJSGlFKUaBVL42gWR0Clx4TNt65YdX2UKGgGaAloD0MItI6qJshFckCUhpRSlGgVS+xoFkdApceJdQfp2XV9lChoBmgJaA9DCAdgAyLErU1AlIaUUpRoFUudaBZHQKXHyueSSvF1fZQoaAZoCWgPQwh41JgQM5JyQJSGlFKUaBVL3mgWR0ClyAfNzKcNdX2UKGgGaAloD0MIuTmVDEA1cECUhpRSlGgVS+poFkdApcikAJb+tXV9lChoBmgJaA9DCEm9p3Laa3JAlIaUUpRoFUvYaBZHQKXIybayrxR1fZQoaAZoCWgPQwiSs7CnHetxQJSGlFKUaBVL0mgWR0ClyPhtcfNidX2UKGgGaAloD0MIgzEiUai4cECUhpRSlGgVTQwBaBZHQKXJEoddVvN1fZQoaAZoCWgPQwjhXpm3qi1xQJSGlFKUaBVL1WgWR0ClyWuAiFCcdX2UKGgGaAloD0MI38K68W4CcECUhpRSlGgVS+1oFkdApdOETlDF63V9lChoBmgJaA9DCCxlGeLY6HFAlIaUUpRoFUvoaBZHQKXTphHbypd1fZQoaAZoCWgPQwgpPGh2nb9yQJSGlFKUaBVLymgWR0Cl09Ks2eg+dX2UKGgGaAloD0MIIQTkS+hacECUhpRSlGgVS9xoFkdApdP6QA+6iHV9lChoBmgJaA9DCMAma9RDqG5AlIaUUpRoFUvlaBZHQKXT/hF3IMl1fZQoaAZoCWgPQwj1vYbgOIVvQJSGlFKUaBVL3mgWR0Cl1Am0NSZSdX2UKGgGaAloD0MIti3KbJCxcECUhpRSlGgVS+9oFkdApdQ3rrxAjnV9lChoBmgJaA9DCITXLm24k29AlIaUUpRoFUvaaBZHQKXUX0fYBeZ1fZQoaAZoCWgPQwh1WOGWD3txQJSGlFKUaBVNAwFoFkdApdSC1qnFYXV9lChoBmgJaA9DCJXzxd7LLXJAlIaUUpRoFUv+aBZHQKXVHkwvg3t1fZQoaAZoCWgPQwjrAl5m2PtyQJSGlFKUaBVL0GgWR0Cl1SHJ1aGIdX2UKGgGaAloD0MIQIUjSCWvcUCUhpRSlGgVS8poFkdApdUu3QUpNXV9lChoBmgJaA9DCOARFaqbz29AlIaUUpRoFUvLaBZHQKXVdzkIX0p1fZQoaAZoCWgPQwgg0m9fhy5xQJSGlFKUaBVL62gWR0Cl1cWXC0ngdX2UKGgGaAloD0MIMILGTKJQckCUhpRSlGgVS9NoFkdApdXqdxyXD3V9lChoBmgJaA9DCGpPyTmx+0tAlIaUUpRoFUukaBZHQKXWE5imVJN1fZQoaAZoCWgPQwh+qDRiZjZvQJSGlFKUaBVL3GgWR0Cl1llWwNb1dX2UKGgGaAloD0MI2nVvRaKRcECUhpRSlGgVS9hoFkdApdadCiRGMHV9lChoBmgJaA9DCFotsMcEiXBAlIaUUpRoFUvuaBZHQKXWuuLaVUx1fZQoaAZoCWgPQwhtdM5PMWhwQJSGlFKUaBVL1mgWR0Cl1r32ugYhdX2UKGgGaAloD0MIdaxSeqZPc0CUhpRSlGgVS+FoFkdApdbuJgsshHV9lChoBmgJaA9DCLCQuTKoTXFAlIaUUpRoFUvwaBZHQKXXUcNH6M11fZQoaAZoCWgPQwg+lGjJY3hyQJSGlFKUaBVL3mgWR0Cl12ljmSyMdX2UKGgGaAloD0MIF4IclHB7cECUhpRSlGgVS+toFkdApddtEAo5P3V9lChoBmgJaA9DCNVbA1slt29AlIaUUpRoFUvLaBZHQKXXwMXJo011fZQoaAZoCWgPQwj/P06YcJxyQJSGlFKUaBVLz2gWR0Cl19CobXHzdX2UKGgGaAloD0MI7Z48LFQic0CUhpRSlGgVS9JoFkdApdfm7QLNOnV9lChoBmgJaA9DCKIqptJP729AlIaUUpRoFUvQaBZHQKXYJlwLmZF1fZQoaAZoCWgPQwjm6PF721NyQJSGlFKUaBVL62gWR0Cl2Nk7W/ahdX2UKGgGaAloD0MIO1J95xfXckCUhpRSlGgVS9RoFkdApdjdTkyULXV9lChoBmgJaA9DCCk/qfapKXBAlIaUUpRoFUvZaBZHQKXZQawUxmF1fZQoaAZoCWgPQwhYObTItglxQJSGlFKUaBVLzGgWR0Cl2VqUu+RHdX2UKGgGaAloD0MIjsu4qYHab0CUhpRSlGgVTQQBaBZHQKXZaoAn2Ix1fZQoaAZoCWgPQwgofSHk/JtxQJSGlFKUaBVL1mgWR0Cl2Z2KEWZadX2UKGgGaAloD0MIrTQpBd24ckCUhpRSlGgVS95oFkdApdm/lOoHcHV9lChoBmgJaA9DCM6JPbQPzW1AlIaUUpRoFUvtaBZHQKXaKNz8xbl1fZQoaAZoCWgPQwhhpu1fmVtwQJSGlFKUaBVLy2gWR0Cl2ja9K28adX2UKGgGaAloD0MIFeC7zRupckCUhpRSlGgVS9VoFkdApdpTnvDxb3V9lChoBmgJaA9DCFNYqaCiJ3FAlIaUUpRoFUvPaBZHQKXam2ycCo11fZQoaAZoCWgPQwiHUnsRrVJxQJSGlFKUaBVNAQFoFkdApdrQUeuFH3V9lChoBmgJaA9DCMFxGTc1aHFAlIaUUpRoFUvbaBZHQKXa04d6syV1fZQoaAZoCWgPQwgMQKN0KXdyQJSGlFKUaBVL3GgWR0Cl2usTN+spdX2UKGgGaAloD0MI6udNRWrjckCUhpRSlGgVS8loFkdApdruwJPZZnV9lChoBmgJaA9DCHOdRloqNGhAlIaUUpRoFU3oA2gWR0Cl24zAeq7zdX2UKGgGaAloD0MIGyrG+VsAc0CUhpRSlGgVS+loFkdApdv49vCMxXV9lChoBmgJaA9DCEnyXN9H5HJAlIaUUpRoFUvXaBZHQKXcEW3z+WJ1fZQoaAZoCWgPQwi+a9CXnjZxQJSGlFKUaBVL02gWR0Cl3Bf2TPjXdX2UKGgGaAloD0MIVG6ilqZec0CUhpRSlGgVS/xoFkdApdwz9ETg23V9lChoBmgJaA9DCJLoZRRL0XJAlIaUUpRoFUvRaBZHQKXcZnHNorZ1fZQoaAZoCWgPQwhfeZCe4pNxQJSGlFKUaBVL6mgWR0Cl3GsCDEm6dX2UKGgGaAloD0MIkbqdfaX8ckCUhpRSlGgVS+1oFkdApdyex4Y773V9lChoBmgJaA9DCG4164wv73FAlIaUUpRoFUvMaBZHQKXdJJLdvbZ1fZQoaAZoCWgPQwjdJAaBVUlyQJSGlFKUaBVL42gWR0Cl3SvWxyGSdX2UKGgGaAloD0MIvt2SHPCEcECUhpRSlGgVS/doFkdApd1Gy/sVtXV9lChoBmgJaA9DCDMXuDyW73NAlIaUUpRoFUvUaBZHQKXdeOavzOJ1fZQoaAZoCWgPQwgqjZjZZ+RuQJSGlFKUaBVNBAFoFkdApd18lolD4XV9lChoBmgJaA9DCBqKO97kHm5AlIaUUpRoFUvgaBZHQKXduqS5iEx1fZQoaAZoCWgPQwiuYvGbwpFxQJSGlFKUaBVL72gWR0Cl3cysCDEndX2UKGgGaAloD0MINiIYBxeXcUCUhpRSlGgVS+VoFkdApd3NWZJCjXV9lChoBmgJaA9DCB8UlKJVpnJAlIaUUpRoFUvOaBZHQKXeFyBkI5Z1fZQoaAZoCWgPQwj2evfHO45yQJSGlFKUaBVLwGgWR0Cl3oWgWac7dX2UKGgGaAloD0MI3gIJil97cECUhpRSlGgVS8poFkdApd6J0+1SfnV9lChoBmgJaA9DCKuSyD4I7XFAlIaUUpRoFUvqaBZHQKXe51RtP551fZQoaAZoCWgPQwhcWaKzDKxyQJSGlFKUaBVL3mgWR0Cl3yCRGMGYdX2UKGgGaAloD0MIIZOMnIUZckCUhpRSlGgVS+doFkdApd8+2NNrTHV9lChoBmgJaA9DCJbrbTPVvXFAlIaUUpRoFU0FAWgWR0Cl3+nAIppfdX2UKGgGaAloD0MIbypSYez9b0CUhpRSlGgVS9ZoFkdApd/xq/M4cXV9lChoBmgJaA9DCPMC7KOTHHFAlIaUUpRoFUvraBZHQKXgHrHEMsp1fZQoaAZoCWgPQwhAahMnt7pxQJSGlFKUaBVL12gWR0Cl4CoeYD1XdX2UKGgGaAloD0MIZsHEH8X+c0CUhpRSlGgVTVYBaBZHQKXgRbGm1pl1fZQoaAZoCWgPQwg2W3nJP7JxQJSGlFKUaBVL+GgWR0Cl4EXzcynDdX2UKGgGaAloD0MIm44AbtZ6ckCUhpRSlGgVS81oFkdApeBMMI/qxHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2-2mill-steps.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10d74202644ae2be16f48770df58567986954ebd93b4b8b75c28fd75a8f85f40
3
+ size 147312
ppo-LunarLander-v2-2mill-steps/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2-2mill-steps/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f92fc591670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f92fc591700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f92fc591790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f92fc591820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f92fc5918b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f92fc591940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f92fc5919d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f92fc591a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f92fc591af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f92fc591b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f92fc591c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f92fc591ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f92fc58e300>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 3014656,
47
+ "_total_timesteps": 3000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673871568307578654,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADOjzyPdmm6y2k0M7IYGzGpco66OYq7swAAgD8AAIA/QN+2vemPkz+zn7m+/HUhv55f3b1lMZi9AAAAAAAAAAAAuuG8X66BP1Fvsb238Qy/moumvDjv2r0AAAAAAAAAAOb8Pr1hCGA/OB1Gvb4G5L54kpu8T9ulvAAAAAAAAAAA5hV4vWAfpz4azV0+LWyfvhCQuTmbB5Y9AAAAAAAAAACA6RG+CCK0PhibZz4j1bC+/9uUvHMXojwAAAAAAAAAAAC7OL1cFm68P6qrPTMKCDzja9I9TtGzPQAAgD8AAIA/TSFYvos7Pj+1QGa+TjIOv5D/jb5Q2ug8AAAAAAAAAAAAiIA8r8FvPW+OzL1cN4G+iPDdveOgpDwAAAAAAAAAAM08eb0pEH+6c9PZtYABtbAahHY5koLvNAAAgD8AAIA/M9TXPRlD7T4D706+lHjJvsWDXr3qc9O9AAAAAAAAAACNosW9KmuaP8Tos748lx2/XFQCvh4vjr4AAAAAAAAAAE1esT1VIJQ/UXObPl2P0L5nLmU+DsKJPgAAAAAAAAAAph2TPXPQqj9G9nQ+AY/tvs8Ogj4LnhQ9AAAAAAAAAAAALfi8FASCuqJnorMSmVOwXvgIOm9ctTMAAIA/AACAP00ZdT0Umo66qMMiPaK5MLP30PW68CZaswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.004885333333333408,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVKxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISREZVnHmc0CUhpRSlIwBbJRNGAGMAXSUR0Clw+i9qUNbdX2UKGgGaAloD0MIByeiXxssc0CUhpRSlGgVTQcBaBZHQKXEC9zwMH91fZQoaAZoCWgPQwgTKji8oE1vQJSGlFKUaBVL7mgWR0ClxGJB5X2edX2UKGgGaAloD0MI+fNtwRI8c0CUhpRSlGgVTR4BaBZHQKXEe3UhFE11fZQoaAZoCWgPQwiPp+UHrp9uQJSGlFKUaBVL6GgWR0ClxIiDEm6YdX2UKGgGaAloD0MIsKpefqdncECUhpRSlGgVS/toFkdApcS4XuVopXV9lChoBmgJaA9DCAUzpmDNLnFAlIaUUpRoFUveaBZHQKXFM7hegL91fZQoaAZoCWgPQwiBeF2/oF9xQJSGlFKUaBVL+mgWR0ClxaWgezUrdX2UKGgGaAloD0MIDFwea8Zmb0CUhpRSlGgVS+5oFkdApcWvTy8SPHV9lChoBmgJaA9DCGiXb32YE3BAlIaUUpRoFUvpaBZHQKXFyGXXyy51fZQoaAZoCWgPQwigbMoVXlhyQJSGlFKUaBVL7mgWR0ClxgbkfcN6dX2UKGgGaAloD0MImNpSB/lgcECUhpRSlGgVS+BoFkdApcZIt6HCXXV9lChoBmgJaA9DCGq932hHCG9AlIaUUpRoFUv1aBZHQKXGvCKJl8R1fZQoaAZoCWgPQwh32hoRjKNzQJSGlFKUaBVL6WgWR0ClxryI55qudX2UKGgGaAloD0MI0xIro5Fyc0CUhpRSlGgVS/5oFkdApcbtFUhmoXV9lChoBmgJaA9DCOIC0ChdlnFAlIaUUpRoFU0FAWgWR0Clx1aews5GdX2UKGgGaAloD0MIduCcESUIcECUhpRSlGgVS9poFkdApcdz7EYO2HV9lChoBmgJaA9DCGO4OgBimHJAlIaUUpRoFU3OAWgWR0Clx3YAjps5dX2UKGgGaAloD0MIZRwj2SOHb0CUhpRSlGgVTQQBaBZHQKXHfeRgZ0l1fZQoaAZoCWgPQwgp6WFodV5tQJSGlFKUaBVL42gWR0Clx4TNt65YdX2UKGgGaAloD0MItI6qJshFckCUhpRSlGgVS+xoFkdApceJdQfp2XV9lChoBmgJaA9DCAdgAyLErU1AlIaUUpRoFUudaBZHQKXHyueSSvF1fZQoaAZoCWgPQwh41JgQM5JyQJSGlFKUaBVL3mgWR0ClyAfNzKcNdX2UKGgGaAloD0MIuTmVDEA1cECUhpRSlGgVS+poFkdApcikAJb+tXV9lChoBmgJaA9DCEm9p3Laa3JAlIaUUpRoFUvYaBZHQKXIybayrxR1fZQoaAZoCWgPQwiSs7CnHetxQJSGlFKUaBVL0mgWR0ClyPhtcfNidX2UKGgGaAloD0MIgzEiUai4cECUhpRSlGgVTQwBaBZHQKXJEoddVvN1fZQoaAZoCWgPQwjhXpm3qi1xQJSGlFKUaBVL1WgWR0ClyWuAiFCcdX2UKGgGaAloD0MI38K68W4CcECUhpRSlGgVS+1oFkdApdOETlDF63V9lChoBmgJaA9DCCxlGeLY6HFAlIaUUpRoFUvoaBZHQKXTphHbypd1fZQoaAZoCWgPQwgpPGh2nb9yQJSGlFKUaBVLymgWR0Cl09Ks2eg+dX2UKGgGaAloD0MIIQTkS+hacECUhpRSlGgVS9xoFkdApdP6QA+6iHV9lChoBmgJaA9DCMAma9RDqG5AlIaUUpRoFUvlaBZHQKXT/hF3IMl1fZQoaAZoCWgPQwj1vYbgOIVvQJSGlFKUaBVL3mgWR0Cl1Am0NSZSdX2UKGgGaAloD0MIti3KbJCxcECUhpRSlGgVS+9oFkdApdQ3rrxAjnV9lChoBmgJaA9DCITXLm24k29AlIaUUpRoFUvaaBZHQKXUX0fYBeZ1fZQoaAZoCWgPQwh1WOGWD3txQJSGlFKUaBVNAwFoFkdApdSC1qnFYXV9lChoBmgJaA9DCJXzxd7LLXJAlIaUUpRoFUv+aBZHQKXVHkwvg3t1fZQoaAZoCWgPQwjrAl5m2PtyQJSGlFKUaBVL0GgWR0Cl1SHJ1aGIdX2UKGgGaAloD0MIQIUjSCWvcUCUhpRSlGgVS8poFkdApdUu3QUpNXV9lChoBmgJaA9DCOARFaqbz29AlIaUUpRoFUvLaBZHQKXVdzkIX0p1fZQoaAZoCWgPQwgg0m9fhy5xQJSGlFKUaBVL62gWR0Cl1cWXC0ngdX2UKGgGaAloD0MIMILGTKJQckCUhpRSlGgVS9NoFkdApdXqdxyXD3V9lChoBmgJaA9DCGpPyTmx+0tAlIaUUpRoFUukaBZHQKXWE5imVJN1fZQoaAZoCWgPQwh+qDRiZjZvQJSGlFKUaBVL3GgWR0Cl1llWwNb1dX2UKGgGaAloD0MI2nVvRaKRcECUhpRSlGgVS9hoFkdApdadCiRGMHV9lChoBmgJaA9DCFotsMcEiXBAlIaUUpRoFUvuaBZHQKXWuuLaVUx1fZQoaAZoCWgPQwhtdM5PMWhwQJSGlFKUaBVL1mgWR0Cl1r32ugYhdX2UKGgGaAloD0MIdaxSeqZPc0CUhpRSlGgVS+FoFkdApdbuJgsshHV9lChoBmgJaA9DCLCQuTKoTXFAlIaUUpRoFUvwaBZHQKXXUcNH6M11fZQoaAZoCWgPQwg+lGjJY3hyQJSGlFKUaBVL3mgWR0Cl12ljmSyMdX2UKGgGaAloD0MIF4IclHB7cECUhpRSlGgVS+toFkdApddtEAo5P3V9lChoBmgJaA9DCNVbA1slt29AlIaUUpRoFUvLaBZHQKXXwMXJo011fZQoaAZoCWgPQwj/P06YcJxyQJSGlFKUaBVLz2gWR0Cl19CobXHzdX2UKGgGaAloD0MI7Z48LFQic0CUhpRSlGgVS9JoFkdApdfm7QLNOnV9lChoBmgJaA9DCKIqptJP729AlIaUUpRoFUvQaBZHQKXYJlwLmZF1fZQoaAZoCWgPQwjm6PF721NyQJSGlFKUaBVL62gWR0Cl2Nk7W/ahdX2UKGgGaAloD0MIO1J95xfXckCUhpRSlGgVS9RoFkdApdjdTkyULXV9lChoBmgJaA9DCCk/qfapKXBAlIaUUpRoFUvZaBZHQKXZQawUxmF1fZQoaAZoCWgPQwhYObTItglxQJSGlFKUaBVLzGgWR0Cl2VqUu+RHdX2UKGgGaAloD0MIjsu4qYHab0CUhpRSlGgVTQQBaBZHQKXZaoAn2Ix1fZQoaAZoCWgPQwgofSHk/JtxQJSGlFKUaBVL1mgWR0Cl2Z2KEWZadX2UKGgGaAloD0MIrTQpBd24ckCUhpRSlGgVS95oFkdApdm/lOoHcHV9lChoBmgJaA9DCM6JPbQPzW1AlIaUUpRoFUvtaBZHQKXaKNz8xbl1fZQoaAZoCWgPQwhhpu1fmVtwQJSGlFKUaBVLy2gWR0Cl2ja9K28adX2UKGgGaAloD0MIFeC7zRupckCUhpRSlGgVS9VoFkdApdpTnvDxb3V9lChoBmgJaA9DCFNYqaCiJ3FAlIaUUpRoFUvPaBZHQKXam2ycCo11fZQoaAZoCWgPQwiHUnsRrVJxQJSGlFKUaBVNAQFoFkdApdrQUeuFH3V9lChoBmgJaA9DCMFxGTc1aHFAlIaUUpRoFUvbaBZHQKXa04d6syV1fZQoaAZoCWgPQwgMQKN0KXdyQJSGlFKUaBVL3GgWR0Cl2usTN+spdX2UKGgGaAloD0MI6udNRWrjckCUhpRSlGgVS8loFkdApdruwJPZZnV9lChoBmgJaA9DCHOdRloqNGhAlIaUUpRoFU3oA2gWR0Cl24zAeq7zdX2UKGgGaAloD0MIGyrG+VsAc0CUhpRSlGgVS+loFkdApdv49vCMxXV9lChoBmgJaA9DCEnyXN9H5HJAlIaUUpRoFUvXaBZHQKXcEW3z+WJ1fZQoaAZoCWgPQwi+a9CXnjZxQJSGlFKUaBVL02gWR0Cl3Bf2TPjXdX2UKGgGaAloD0MIVG6ilqZec0CUhpRSlGgVS/xoFkdApdwz9ETg23V9lChoBmgJaA9DCJLoZRRL0XJAlIaUUpRoFUvRaBZHQKXcZnHNorZ1fZQoaAZoCWgPQwhfeZCe4pNxQJSGlFKUaBVL6mgWR0Cl3GsCDEm6dX2UKGgGaAloD0MIkbqdfaX8ckCUhpRSlGgVS+1oFkdApdyex4Y773V9lChoBmgJaA9DCG4164wv73FAlIaUUpRoFUvMaBZHQKXdJJLdvbZ1fZQoaAZoCWgPQwjdJAaBVUlyQJSGlFKUaBVL42gWR0Cl3SvWxyGSdX2UKGgGaAloD0MIvt2SHPCEcECUhpRSlGgVS/doFkdApd1Gy/sVtXV9lChoBmgJaA9DCDMXuDyW73NAlIaUUpRoFUvUaBZHQKXdeOavzOJ1fZQoaAZoCWgPQwgqjZjZZ+RuQJSGlFKUaBVNBAFoFkdApd18lolD4XV9lChoBmgJaA9DCBqKO97kHm5AlIaUUpRoFUvgaBZHQKXduqS5iEx1fZQoaAZoCWgPQwiuYvGbwpFxQJSGlFKUaBVL72gWR0Cl3cysCDEndX2UKGgGaAloD0MINiIYBxeXcUCUhpRSlGgVS+VoFkdApd3NWZJCjXV9lChoBmgJaA9DCB8UlKJVpnJAlIaUUpRoFUvOaBZHQKXeFyBkI5Z1fZQoaAZoCWgPQwj2evfHO45yQJSGlFKUaBVLwGgWR0Cl3oWgWac7dX2UKGgGaAloD0MI3gIJil97cECUhpRSlGgVS8poFkdApd6J0+1SfnV9lChoBmgJaA9DCKuSyD4I7XFAlIaUUpRoFUvqaBZHQKXe51RtP551fZQoaAZoCWgPQwhcWaKzDKxyQJSGlFKUaBVL3mgWR0Cl3yCRGMGYdX2UKGgGaAloD0MIIZOMnIUZckCUhpRSlGgVS+doFkdApd8+2NNrTHV9lChoBmgJaA9DCJbrbTPVvXFAlIaUUpRoFU0FAWgWR0Cl3+nAIppfdX2UKGgGaAloD0MIbypSYez9b0CUhpRSlGgVS9ZoFkdApd/xq/M4cXV9lChoBmgJaA9DCPMC7KOTHHFAlIaUUpRoFUvraBZHQKXgHrHEMsp1fZQoaAZoCWgPQwhAahMnt7pxQJSGlFKUaBVL12gWR0Cl4CoeYD1XdX2UKGgGaAloD0MIZsHEH8X+c0CUhpRSlGgVTVYBaBZHQKXgRbGm1pl1fZQoaAZoCWgPQwg2W3nJP7JxQJSGlFKUaBVL+GgWR0Cl4EXzcynDdX2UKGgGaAloD0MIm44AbtZ6ckCUhpRSlGgVS81oFkdApeBMMI/qxHVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 736,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2-2mill-steps/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdf7a2250a25c8a5a65d21efc627fcb07c49f20ca1e049aff140c7a180a34fc0
3
+ size 87929
ppo-LunarLander-v2-2mill-steps/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da9f16e5c401e627507fdfdd2ce3f2e1087b39782b0942f5da579d36b60b5856
3
+ size 43393
ppo-LunarLander-v2-2mill-steps/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-2mill-steps/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (193 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 286.9848361957771, "std_reward": 13.608532091676949, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T14:34:43.290566"}