Update README.md
Browse files
README.md
CHANGED
@@ -33,13 +33,13 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
33 |
|
34 |
# Load the tokenizer and model
|
35 |
tokenizer = AutoTokenizer.from_pretrained("metagene-ai/METAGENE-1")
|
36 |
-
model = AutoModelForCausalLM.from_pretrained("metagene-ai/METAGENE-1", torch_dtype=torch.bfloat16)
|
37 |
|
38 |
# Example input sequence
|
39 |
input_sequence = "TCACCGTTCTACAATCCCAAGCTGGAGTCAAGCTCAACAGGGTCTTC"
|
40 |
|
41 |
# Tokenize the input sequence and remove the [EOS] token for generation
|
42 |
-
input_tokens = tokenizer.encode(input_sequence, return_tensors="pt", add_special_tokens=False)
|
43 |
|
44 |
# Generate output from the model
|
45 |
generated_tokens = model.generate(input_tokens, max_length=32)
|
|
|
33 |
|
34 |
# Load the tokenizer and model
|
35 |
tokenizer = AutoTokenizer.from_pretrained("metagene-ai/METAGENE-1")
|
36 |
+
model = AutoModelForCausalLM.from_pretrained("metagene-ai/METAGENE-1", torch_dtype=torch.bfloat16, device_map="auto")
|
37 |
|
38 |
# Example input sequence
|
39 |
input_sequence = "TCACCGTTCTACAATCCCAAGCTGGAGTCAAGCTCAACAGGGTCTTC"
|
40 |
|
41 |
# Tokenize the input sequence and remove the [EOS] token for generation
|
42 |
+
input_tokens = tokenizer.encode(input_sequence, return_tensors="pt", add_special_tokens=False).to(model.device)
|
43 |
|
44 |
# Generate output from the model
|
45 |
generated_tokens = model.generate(input_tokens, max_length=32)
|