File size: 9,675 Bytes
cc2c805 a6abb54 cc2c805 a6abb54 cc2c805 a6abb54 6e1abd5 cc2c805 a6abb54 cc2c805 a6abb54 cc2c805 a6abb54 cc2c805 a6abb54 cc2c805 a6abb54 cc2c805 a6abb54 cc2c805 a6abb54 cc2c805 a6abb54 cc2c805 a6abb54 cc2c805 a6abb54 cc2c805 a6abb54 cc2c805 a6abb54 cc2c805 a6abb54 cc2c805 a6abb54 cc2c805 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
---
base_model:
- remyxai/SpaceOm
datasets:
- remyxai/SpaceThinker
language:
- en
library_name: llama.cpp
license: apache-2.0
pipeline_tag: image-text-to-text
paper: 2506.07966
tags:
- gguf
- remyx
- SpatialReasoning
- spatial-reasoning
- test-time-compute
- thinking
- reasoning
- multimodal
- vlm
- vision-language
- distance-estimation
- quantitative-spatial-reasoning
task_categories:
- visual-question-answering
pretty_name: SpaceOm-GGUF
model-index:
- name: SpaceOm
results:
- task:
type: visual-question-answering
name: Spatial Reasoning
dataset:
name: 3DSRBench
type: benchmark
metrics:
- type: success_rate
value: 0.5419
name: Overall Success Rate
- type: success_rate
value: 0.599
name: Overall Success Rate
- type: success_rate
value: 0.388
name: Overall Success Rate
- type: success_rate
value: 0.5833
name: Overall Success Rate
- type: success_rate
value: 0.4455
name: Overall Success Rate
- type: success_rate
value: 0.4876
name: Overall Success Rate
- type: success_rate
value: 0.6105
name: Overall Success Rate
- type: success_rate
value: 0.7043
name: Overall Success Rate
- type: success_rate
value: 0.3504
name: Overall Success Rate
- type: success_rate
value: 0.2558
name: Overall Success Rate
- type: success_rate
value: 0.8085
name: Overall Success Rate
- type: success_rate
value: 0.6839
name: Overall Success Rate
- type: success_rate
value: 0.6553
name: Overall Success Rate
---
# SpaceOm
This model is evaluated in the paper [SpaCE-10: A Comprehensive Benchmark for Multimodal Large Language Models in Compositional Spatial Intelligence](https://huggingface.co/papers/2506.07966).
The code for the SpaCE-10 benchmark is available at: https://github.com/Cuzyoung/SpaCE-10.
**Model creator:** [remyxai](https://huggingface.co/remyxai)<br>
**Original model**: [SpaceOm](https://huggingface.co/remyxai/SpaceOm)<br>
**GGUF quantization:** `llama.cpp` commit [2baf07727f921d9a4a1b63a2eff941e95d0488ed](https://github.com/ggerganov/llama.cpp/tree/2baf07727f921d9a4a1b63a2eff941e95d0488ed)<br>
## Description
<img src="https://cdn-uploads.huggingface.co/production/uploads/647777304ae93470ffc28913/5cPsHwrmzqPOjd7zUgzss.gif" width="500"/>
## Model Overview
**SpaceOm** improves over **SpaceThinker** by adding:
* the target module `o_proj` in LoRA fine-tuning
* **SpaceOm** [dataset](https://huggingface.co/datasets/salma-remyx/SpaceOm) for longer reasoning traces
* **Robo2VLM-Reasoning** [dataset](https://huggingface.co/datasets/salma-remyx/Robo2VLM-Reasoning) for more robotics domain and MCVQA examples
The choice to include `o_proj` among the target modules in LoRA finetuning was inspired by the study [here](https://arxiv.org/pdf/2505.20993v1), which argues for
the importance of this module in reasoning models.
The reasoning traces in the SpaceThinker dataset average ~200 "thinking" tokens so now we've included longer reasoning traces in the training data
to help the model use more tokens in reasoning.
Aiming to improve alignment for robotics applications, we've trained with synthetic reasoning traces, derived from the **Robo2VLM-1** [dataset](https://huggingface.co/datasets/keplerccc/Robo2VLM-1).
## Model Evaluation
### SpatialScore - 3B and 4B models
| **Model** | **Overall** | **Count.** | **Obj.-Loc.** | **Pos.-Rel.** | **Dist.** | **Obj.-Prop.** | **Cam.&IT.** | **Tracking** | **Others** |
|------------------------|-------------|------------|----------------|----------------|-----------|----------------|---------------|---------------|------------|
| SpaceQwen2.5-VL-3B | 42.31 | 45.01 | 49.78 | 57.88 | 27.36 | 34.11 | 26.34 | 26.44 | 43.58 |
| SpatialBot-Phi2-3B | 41.65 | 53.23 | 54.32 | 55.40 | 27.12 | 26.10 | 24.21 | 27.57 | 41.66 |
| Kimi-VL-3B | 51.48 | 49.22 | 61.99 | 61.34 | 38.27 | 46.74 | 33.75 | 56.28 | 47.23 |
| Kimi-VL-3B-Thinking | 52.60 | 52.66 | 58.93 | 63.28 | 39.38 | 42.57 | 32.00 | 46.97 | 42.73 |
| Qwen2.5-VL-3B | 47.90 | 46.62 | 55.55 | 62.23 | 32.39 | 32.97 | 30.66 | 36.90 | 42.19 |
| InternVL2.5-4B | 49.82 | 53.32 | 62.02 | 62.02 | 32.80 | 27.00 | 32.49 | 37.02 | 48.95 |
| **SpaceOm (3B)** | 49.00 | **56.00** | 54.00 | **65.00** | **41.00** | **50.00** | **36.00** | 42.00 | 47.00 |
See [all results](https://huggingface.co/datasets/salma-remyx/SpaceOm_SpatialScore) for evaluating **SpaceOm** on the **SpatialScore** [benchmark](https://haoningwu3639.github.io/SpatialScore/).
Compared to **SpaceQwen**, this model outperforms by all categories
<img src="https://cdn-uploads.huggingface.co/production/uploads/647777304ae93470ffc28913/tyrLNKsW3PAuZ8t7pCKU6.png" width="800">
And comparing to **SpaceThinker**:
<img src="https://cdn-uploads.huggingface.co/production/uploads/647777304ae93470ffc28913/TWRLWismj3-HduHUkTAuM.png" width="800">
### SpaCE-10 Benchmark Comparison
[](https://colab.research.google.com/drive/1YpIOjJFZ-Zaomg77ImeQHSqYBLB8T1Ce?usp=sharing)
This table compares `SpaceOm` evaluated using GPT scoring against several top models from the SpaCE-10 benchmark leaderboard. Top scores in each category are **bolded**.
| Model | EQ | SQ | SA | OO | OS | EP | FR | SP | Source |
|------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|
| **SpaceOm** | 32.47 | 24.81 | **47.63** | **50.00** | **32.52** | 9.12 | 37.04 | 25.00 | GPT Eval |
| Qwen2.5-VL-7B-Instruct | 32.70 | 31.00 | 41.30 | 32.10 | 27.60 | 15.40 | 26.30 | 27.50 | Table |
| LLaVA-OneVision-7B | **37.40** | 36.20 | 42.90 | 44.20 | 27.10 | 11.20 | **45.60** | 27.20 | Table |
| VILA1.5-7B | 30.20 | **38.60** | 39.90 | 44.10 | 16.50 | **35.10** | 30.10 | **37.60** | Table |
| InternVL2.5-4B | 34.30 | 34.40 | 43.60 | 44.60 | 16.10 | 30.10 | 33.70 | 36.70 | Table |
**Legend:**
- EQ: Entity Quantification
- SQ: Scene Quantification
- SA: Size Assessment
- OO: Object-Object spatial relations
- OS: Object-Scene spatial relations
- EP: Entity Presence
- FR: Functional Reasoning
- SP: Spatial Planning
> ℹ️ Note: Scores for SpaceOm are generated via `gpt_eval_score` on single-choice (`*-single`) versions of the SpaCE-10 benchmark tasks. Other entries reflect leaderboard accuracy scores from the official SpaCE-10 evaluation table.
Read more about the [SpaCE-10 benchmark](https://arxiv.org/pdf/2506.07966v1)
## Limitations
- Performance may degrade in cluttered environments or camera perspective.
- This model was fine-tuned using synthetic reasoning over an internet image dataset.
- Multimodal biases inherent to the base model (Qwen2.5-VL) may persist.
- Not intended for use in safety-critical or legal decision-making.
> Users are encouraged to evaluate outputs critically and consider fine-tuning for domain-specific safety and performance. Distances estimated using autoregressive
> transformers may help in higher-order reasoning for planning and behavior but may not be suitable replacements for measurements taken with high-precision sensors,
> calibrated stereo vision systems, or specialist monocular depth estimation models capable of more accurate, pixel-wise predictions and real-time performance.
## Citation
```
@article{chen2024spatialvlm,
title = {SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning Capabilities},
author = {Chen, Boyuan and Xu, Zhuo and Kirmani, Sean and Ichter, Brian and Driess, Danny and Florence, Pete and Sadigh, Dorsa and Guibas, Leonidas and Xia, Fei},
journal = {arXiv preprint arXiv:2401.12168},
year = {2024},
url = {https://arxiv.org/abs/2401.12168},
}
@misc{qwen2.5-VL,
title = {Qwen2.5-VL},
url = {https://qwenlm.github.io/blog/qwen2.5-vl/},
author = {Qwen Team},
month = {January},
year = {2025}
}
@misc{vl-thinking2025,
title={SFT or RL? An Early Investigation into Training R1-Like Reasoning Large Vision-Language Models },
author={Hardy Chen and Haoqin Tu and Fali Wang and Hui Liu and Xianfeng Tang and Xinya Du and Yuyin Zhou and Cihang Xie},
year = {2025},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/UCSC-VLAA/VLAA-Thinking}},
}
@article{wu2025spatialscore,
author = {Wu, Haoning and Huang, Xiao and Chen, Yaohui and Zhang, Ya and Wang, Yanfeng and Xie, Weidi},
title = {SpatialScore: Towards Unified Evaluation for Multimodal Spatial Understanding},
journal = {arXiv preprint arXiv:2505.17012},
year = {2025},
}
@article{gong2025space10,
title = {SpaCE-10: A Comprehensive Benchmark for Multimodal Large Language Models in Compositional Spatial Intelligence},
author = {Ziyang Gong and Wenhao Li and Oliver Ma and Songyuan Li and Jiayi Ji and Xue Yang and Gen Luo and Junchi Yan and Rongrong Ji},
journal = {arXiv preprint arXiv:2506.07966},
year = {2025},
url = {https://arxiv.org/abs/2506.07966}
}
``` |